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SMMARY

The present report presents a theoretical enalysls of en initilally
flat, rectangular plate with large deflections under either normal.
pressure or conbined normal pressure and slde thrust. As small
deflections of a flat plate ars govermed by a single linear equation,
large deflections introduce nonlinear terms into the conditions of
equllibrium and are governsd by 2 fourth-orrler, second.—degree s, partial
differential equatlions. These so-called Von Kermsh equations are
studied in the present report by use of the finlte-difference approxi-
mations. The difference equations are solved by two methods, namely,
the method of successive approximations end the relaxation method._.
Neither of these methods 1s new, but thelr application to nonllnear
problems requires now techniques. _ S

The problem of a uniformly loaded square plats with boundary
conditions which epproximate the riveted sheet-stringer panels is
golved by the method of succegslve approximations. The theoretical
center deflections show good egreement wlth the recent experimental
results obtained at the California Institute of Technology when the
deflections are of the ordsr of the plate thickness. This agreement
perheps suggests the rangs 1n which these Von Kalmsn eguations are
to be applied. .

Other problems of thin plates wilth lerge deflectlons are discussed
fraom the point of view of an aeronautlcal engineer. The boundary
conditlons which approximate the various cases are formulated, and tHe
mothods for solving these problems are outlined.

Since the method presented in the present report is generel, 1t
may be applied to solve bending end combined bending and buckling
problems with practically any boundary conditlons, and the results may
be obtained to any degree of accuracy required. Furthermore, the same
method mey be applied to solve the membrans theory of the ;plate which
applies when the deflection is very large in comparison with the
thickness of the plate. T
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INTRODUCTION

The classicel theory of the Pbending of a thin elastic plate expresses
the relation between the transverse deflection of the middle surface of
the plate w and the latersl loading of Intensity p Dy the equation

DV = p

EnS

12(1 - p3)
known that the theory is restricted in application, for on the ome hend
its basic assumptions cean be gquestioned unless the plate 1s thin, and
on the other hand it neglects an effect which must be apprecilsble
when w has values comparable with the thickness. This ls the membranse
effect of curvature, whereby tension or compression in the middle
surface tends to oppose or to reinforce p. The effect is negliglble
when w 1s very small, provided no stresses act Inltially in the plane
of the middle surface; bubt even so, 1t operates when w is small
because strotching the middle surface is & necessary consequence of the
trensverse deflection. When the deflection gets lerger and larger,
the menbrens effect becomes more and more prominent until for very large
values of w +tho membrans effect is predominant whereas the bending
gtiffness 1s comperatively negligible.

where D =

is the flexural rigidity of the plate. It is

Small transverse displacements of a flat elastlc plate are governed
by & single limser equatlon but large displacemsnts entail stretching
of the middle surface and comsequent tensions which, Interacting with
the curvatures, introduce nonlinear terms into the conditions of
equilibrium end so make those equations no longesr Independent.

The large-deflection theory of flat plates is glven by A. Fdppl
(reference'l), and the second-order terms were formulated by Thecdore
von Kdrmsn in 1910 (reference 2). The amended (large-deflection)
equations have been solved, however, in only & few cases (references 3
to 19) and then with considsreble labor.

Essentially there are three problems concerming flat plates with
large deflections. They are:

1. The bending problems, when the flat plates are subjected to
lateral loasding perpendicular to the plane of the plates, but no
side thrust is applied in the plene of the plates

2. The buclﬂ_hlg problems, when the plates are subjected to alde
thrusts in the plane of the plates but arxre not loaded laterally

3. The conbined bending and buckling problems, when the plates
are subJected to both lateral loading end side thrusts
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In the cage of metal alrplanses, in which weight is of primery
importance, the metal sheets used must be thin and the deflections of
the plates are usuelly lerge In comparison with thelr thickness. In
‘order to obtain the design foremmles or charte for stressing such
plates, the large-deflection theory must be used. T

The bending problem is Importent in the design of seaplanes.
Seaplanes are subJected to a severe impact during landing and teke-
off, especlally on rough water. The impact must be withstood first
by the bottom plating end then by & system of transverse and longl-
tudinal members to which the bottom plating is attached, before it is
transmitted to the body of the structure. The bottom should be strong
enough not to washboard permanently under these ilmpact pressures.
Such washboexrding 1s undeslirsble because of the increased friction
between the float bottom.and the water and also because of the incroased

eerodynamic drag in flight. .

The bottom plating of sesmplanes 1s, as a rule, subdivided into
a2 large munber of nearly rectanguler areas by the ansverse and
longitudinal supporting ribs. REach of these areas bshaves substantially
like & rectanguler plate under normel pressure. Beunding of rectengular
flat plates may thesrefore be used to study the washboarding of seaplane
bottoms, provided the boundary corditions at the edges can be fomulated.
Just as in the seaplans. -

The buckling problem is important in determining the strength
of sheet-stringsr pensls in end compression. The use of stlffened

sheet to carry compressive loads is increasingly populer in box beams

for airplane wings and in othsr types of seml monocoque construction.
Inasmuch as the sheets used as alrcraft structural elements are geflerally
quite thin, the buckling stresses of these sheet elements are necessarily
low. The designer is thersfore confronted with the problem of using

sheet metal In the buckled or wave state end of determining the stress
distributlion and allowgble etresses in such buckled pletes.

The comblined bending end buckling problem has hecome a problem of
importaence with the increesing use of wings of the stressed-skin type
and the pressurized fuselage construction for high-altitude flight.
During flight the wing is subjected to a pressure difference betwesn
the two sldes which produces the 1ift. The normel pressure acts
directly on the sheet covering and ls then dilstributed to ribs and
spars. At the same time the sheet panels are also subjected to a side
thrust dus to bending of the wing. In an airplane of pressurlzed
fuselage construction an attempt 1s made to keep the pressure inslde
the cabin at & comfortable level for the passengers, regardless of the
sltitude of the alrplane. Thus, thers is a pressure dlifferentlal across
the fugelege skin with an Intermal pressure higher than that outside. ‘
The fuselage skin is usuelly subdivided into & number of rectanguler
curved panels by longitudinel stringers and rings. These pansls are
subjected to the pressure difference and slde thrust resulting from

bending of the fuselage. As pointed out by Niles a.nd. Newell (reference 20)
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the strength of curved sheet-stringer panels cen be determined approxi-
mately from the flat sheet-stringer panels. The problem is then
esgentially that of determining the strength of flat plates under combined
lateral loading and side thrust.

Levy (reference 19) has shown that the effective width of a squere
plate with simply supported edges decreases with the addlition of lateral

pressure end that the reduction 1s apprecilable for PEE > 2.25. Therefore,
- Eh

a panel is unsafe If 1its design is based upon the side-thrust considerations
only, ani the study of combined loading is of great slgnificance.

A great number of authors have studied the buckling problems, and
conslderable experimental work hes been cerried out. As a result,
design formulas eare avallable and seem to be accurate for most practical
purposes. The bending problems, however, have been studled by only a
few investigators, and test results (references 21 to 23) are far too
gearce to Justify any conclusgions. The combined bending and buckling
problem hes been studied In only one case (reference 19) , and even in
thils instance the results are Ilncomplets.

Among the solutions of the large-deflection problems of rectangulaer
plates under bending or combined bending and compression, Levy's solutions
are the only omes of & theoretically exact nature. Hls solutlons are,
however, limited to a few boundary conditions and the numwerical results
can be obtalned only after great labor.

The purpose of the present investigation is to develop a simple
end yet sufficlently accurete method for the solutlon of the bending and
the combined bending and buckling problems for englneering purposes,
and thls is eccomplished by means of the finite-difference approximations.

Solving the pertial differential equations by finlte-difference
equetions hes been accomplished previously. Solving the resulting
difference equations, however, is stlll a problem. In the case of
linear difference egquations, solutlions by successive approximatlon
are always convergent and the work is only tedlous. Besides, Southwell's
relaxation method mey be applied without tooc much trouble. But, in
order to solve the nonlinesr difference equations, the successive-
approximation method cannot always be relied on because it does not
elweys glve & convergent solution. The relaxetion method, slince 1t is
nothing but intelligent gueeslng, can be applled In only a few casee
and then with great difficulties (reference 16).

A study of the finlte-difference expressions of the large-deflsctlon
theory reveals that a technigue can be developed by means of which the
system of nonlineer difference equations csn be solved with rapld
convergence by successive approximetion by using Crout's method of
solving a system of linser simulteneous equations (reference 24). By
way of illustratlon, a square plate under uniform normal pressure wlth

boundary conditions approximeting the riveted sheet-stringer panel
ig studied by this method. Nondimensional deflections and stresses are
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giv-en under various normal pressures. The results are consistent with
Levy's approximete numericel solution for ideal, simple supported plates
(reference 19) and Way's approximate solution ror ideal clamped edges
(reference 15) , end the center deflsctions check closely wlth thﬁ test

results by Head and Sechler (reference 23) for the ratio pa /Eh

large a8 120. The deviation for the ratio pa /Eh larger than 120
is probebly dus to the eapproximations employed in the derivation of
the baslc differentiel squation.

The procedure ls qulte general; it may be applied to solve the

problems of rectanguler plates of any length-width ratio with various
boundary conditions under either normal pressure or combined normal
pressure and slde thrust.

The present investlgation was origlnally cerrled out under the
direction of Professor Joseph S. Newell at the Danlel Guggenhelm
Aeronautical Taboratory of the Massachusetts Institute of Technology
and was completed at Brown Unlverslty, under the sponsorship and with
the financiel support of the National Advisory Committee for Aeronautics,
where the author was participating in the program for Advanced Instruction
and Regearch in Mechanics. The author was particularly fortunate to
receive frequent advice while working on this problem from Professor
Richard von Mises of Harvard Unlversity. The author is grateful to both
Professor Newsll and Professor von Mises for thelr many veluable

suggestions.

SYMBOLS
length and. width of plate, respectively
thickness of plate - .

coordinates of & point in plate

horizontal dlsgplacements of points in middle surface
in x- and y-directions, respectively (nondimensiona.

forms ere ua/h2, va/h°, respectively)

deflection of middle surface from 1ts Initilal plene
(nondimensional form is w/h)

normal load on plate per unit area (nondimensionel
form is pe /[Ent)

Young's modulus and Poisson's ratilo, respectively

Fflexural rigidlity of plate ———eee
(12(1 - u2>
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2 a2 _
v2 - é—— E e [ 3
x° e =
L L Iy -
xt “xE 3y dy _
ox'y Oyt Txy' menmbrene stresses in middle surface (nondimensional
2
forms are oy 'a/En2, O'y'a.z/EhQ, end T__'al/En=,
Xy
respectively)
ox", oy", Txy" extreme-fiber bending and shearing stresses i

(nondimensional forms are oy "a2/Eh?, oy"az/Ehe,
and. 'rJ‘;Y"a.Q/Eh2 , Trespectively)

' membrene strains in middle swrface (nondimensional
forms are 64 'a?/h2, Gy'ef"/he, and. 73@9"8‘2/112’
respectively)

" " "
€x , € 7. extreme-fiber bending and shearing sitralns
Py IR (nondimensionsl forms are €4"a?/h2, ey"a,z/ha,

and 7g,"e?/b®, respectively)

F gtress function (nondimensional form is F/Eh2)

A, Az,-.., A" first-, second-, ..., to nth-order differences, .
respectively

B, by first-order differences in x- and y-directions,
respectively

FUNDAMENTAL DIFFERENTIAL EQUATIONS

The thickness of the plate ls assumed small compared wilth its other
dimensions. The middle plane of the plate is teken to coincide with the ~
xy-plane of the coordinate system and to be & plane of elestlc symietry.
After bending, the points of the middle plane are displaced and lie
on some surface which is called the middle surface of the plate. The
dlsplacement of a point of the middle plene in ths dlrection of
the z-axis w 1&g called the deflectlon of the glven point of the plate.

Conslder the case in which the deflectlions are large in comparison
with the thickness of the plate but, at the seme time, are small enough
. to Justify the followlng eassumptions: -



NACA TN No. 1425 . T

1. Lines normsl to the middle surface hefore deformation remain
normel to the mlddle surface after deformation.

2. The normal stress o, perpendiculer Yo the faces of the plate
is negligible in comparison with the other normel stresses.

In order to investlgate the state of straln in a bent plate, it
is supposed that the middle surface 1is actually deformed and that
the deflectioms are no longsr smell in comperison with the thilckness
of the plate but are still =mall as compared with the other dimensions.

Under these essumptlons, the following fundamental partial

differentlal equetions governlng the deformetlon of thin plates can ’be
derived from the compatibllity and equilibrium condlitions:

Qig ' a F - B ﬁi: 2 _ By éff}
TR 352 32 3y°

oty , o S 2L (TR P P P
-t 5x2 3y | S D\Sx2 52 © o2 @  ox oy ox oy
Eh .
where D = —————  the median-fiber stresses are -
12(1 - u2)
_ ¥
X aya
-G
a.
-
xy d3x dy

and the median-fiber stralns are ——

er__];éﬁ 82 - o S
X T E\yp? Ha2 )

i 623‘ §_‘_2£' : . -
¥ ax aya ’
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g 1o 2(L ) Pr -
Xy B ox Oy

The extreme-flber bending and shearing stresses are

W o B (P aaf>

Py A

o "= - Eh 82 a%(
YT - @ \e2
Eh P

XY T (1 + ) Ox Oy

These expressions can be made nondimensional by writing

&
W
‘w'=£ y’:%
L 2
e o)
Ent

o' =2(2 é
E\}2
whoere & 1s the smaller slde of the rectengular plate.

The differentlel equations then become

a_gE a;: , e (a%.-' 2 3Pyt Py

axaE a,ylll- dx' dy! 3 12 ay'2
I b I 2
d'w! 9 w! O w! _ _ 2 B% w!
_-_ + 2ax'2 - + ar = 12(1 - p®)p* + 12(1 pe) ay'2 e

, P B Fr a2w'>
dx 12 ay:E ' Jy' X' dy
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If p? = 0.1, which valus is characteristic of aluminum alloys, and
the primes are dropped, the partial differentlial equations in nondimensional

form are
3 P\ ~ %y P
—E”ax?ay? ay“ (ax> i )
X X 25 3P
Q—E Bxgaya —E_=108p+108 ay28x2

PP B )
" 2 5 axayaxay

The nondimensional medlan-fiber stresses are

-5
-G

cy —312 >

T i°=-_a_22_
Xy axay

Ox

(3)

~

and the nondimensionsl medlan-fiber strains are

\

(%)

. 3%F
Y xy 2(1 + n)ax .
J

The nondimensionsl extreme-flber bending and shearing stresses are
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" 1 W aew

TN - ) 5;2 2

R N 32 aaw _
% T AT - ) > S (5)
I aaw
e 2(1 +p) x Yy
A

FORMULATION OF BOUNDARY CONDITIONS

The governing differential equatlons are 2 fourth-order simul-
taneous partial differentiel equations in two variables. In order to
obtain a unlque solution in the case of rectangular pletes, there must
be four glven houndery condlitions at each edge.

Before proceeding to the actual case, two theoretical boundary
conditions may be mentloned:

l. Simply supported plates, that is, plates heaving edges that can
rotate freely sbout the supports and can move freely along the supports

2. Clamped or bullt-in plates, that is, plates having edges that
are clamped rigildly ageinst rotation about the supports and at the same
time are prevented from having any dlsplacements along the supports

Actually, it is to be expected that neither of these conditlons will
be fulfilled exactly in a structure.

The bending problem wlll be considered next, in which the bottom
plating of a seaplane is to be studied. The behavior of the sheet
approximates that of en infinite sheet supported on a homogensous
elastic network with rectanguler fields of. the same rigldity as the
supporting framework of the sscaplene.

Becausc of the symmetry of the rectangular flelds, the displacement
in the plens of the sheet and the slope of the sheet relative to the
plane of the network must be zero wherever the sheet passes over the
center line of sach supporting heam. Each rectengular fleld will
therefore behave as g rectangular plete clamped elong its four edges on
supports that are rigld enough in the plans of the sheet to prevent
their displacement in that plane. At the same time these supports must
have a rigidity normel to the plans of the sheet equal to that of
the actual gupports in the flying-boat bottom. _
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The rigldity of the supports will lis someswhere bstween the
unattalnable extremes of zero rigldity end infinite rigidity. The
extreme of infinite rigidity normal to the plane of the sheet is
one that may be approximated in actusl designs. It can be shown that
the stress distribution in such a fixed-edge plate will, in most cases,
be less favorable then the stress distribution in the elastic-edge
plate. The strength of plates obtainsd from the thsory will therefors
be on the safe slde if applied in flying-boat design. Reference might
be made in this commection to & paper by Mesnager (referemce 25), in
which it is shown that a rectanguler plate with elastic edges of certain
flexibility will be less highly stressed then a clamped-edge plate. This
difference in stress may also be clearly seen by comparing the extreme-
fiber-stress calculations by Levy (reference 19) and Way (reference 15)
for slmply supported plates and clemped plates.

The impact pressure on a flying-boat bottom in actual cases,
however, is not even approximately uniform over a portion of the sheet
covering several rectanguler fields. Usually one rectanguler pansl of
the bottom plating would resist a higher impact pressure than the
surrounding panels, and the sheet 1s supported on beams of torsional
stiffness Insufflclent to develop large mowenis along the edgss. The
high bending stresses at the edges characteristic of rigidly clamped
* plates would then be ebsent. In order to approximate this condition,
the plate may be assumed to be simply supported so that it 1s free to
rotate about the supports. At the same tims the riveted Joints prevent
it from moving 1ln the plane of the plate along and perpendicular to the
supports. According to the same consideratlons as in the case of rigldly
clamped edges, the result would be on the safe side. This case has
never before Ybeen discussed and the study of such a problem secms to
be of importance.

For the comblined bending and buckling problems the same consider-
atlions will hold. It is evident, however, that as soon as the side
thrust 1s epplied, there are dlsplacements perpendicular to the
supported edges in the plane of the plate. Gall (refersnce 26) has
found that a stiffener attached to a flat sheet carrying a compressive
load. contributod approximately the same elastic support to the sheet
as was required to gilve a simply supported edge (see also reference 20,
p. 327). In combined bending and compression problems » therefore, it
seems also lmportant to study the 1ldesl simply supported plates. The
analyticel expressions for these boundery conditlons are formulated in
the following dlscussion.

Simbly Supported Edge I

If the edge y =0 of the plate is simply supported, the deflection w
along this edge must be zero. At the same time this edge can rotate freely
wlth respect to the x-axis; that i1s, there is no~ bending moment M%,
along this edge. In this case, the analytical formwlation of the bhysical

boundary conditlons is —



12 NACA TN No. 1425

(W)y=o =0

Py, B o (6)
ay2 “axg ¥y=0 )

Similarly, if the edge x = O of-the plate 1s simply supported, the
boundary conditions are

(W)x0 = ©
v
(:éxQ Tu ay2 x=0 =0

Since w =0 along y = 0, Ovw/dx and d%w/Xx® must be zero
also. The boundary conditlons can therefore he wrlitten as

(W)y=0 =0
525 (7)
<$>y=0 =0
Similarly, on the edge x =0,
(Wgp = 0

=0
@.

If the plate has ldeal simply supported edges, it must be free to
move along the supported edges 1n the plane of the plate; that is, the
shearing stress along the eodges in the plans of the plate is zero.

; ;5 2
< )

ny-)m -

|
(&

|
o
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°F >
= Q
<§x oy 720

in) -0
ox oy 0

One more boundary condition is requlred to solve the plate problems
uniquely, and this may be obtalned by speclfying elther the normal
stresses or the dlesplacements along the edgss.

or

For a plate havling zero-edge compresslon, the normal stresses along
the edges are zero. That is,

(5 )ymo = °
or —
<g§g)x=0 =0
~ (8)
J

The strain in the medlen plane is

.,,ag+;<a_vre
fx Tax T 2\Wx

%'=%+§<§f
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Therefore

a-u. - - l. §¥x>2 - [
ax - x 2 (6
h =¢ ' - l"’ (@i)a
oy ¥ 2\o
and the displacement of the edges In the x-direction is
= t & /a...‘f) ]
u = € dx
f y=Constant [x 2 \ax

while the displacemeont of the edges In the y-dirsction is
.
et 2 ]
x=Constant!l oy.

The addltion of side thrust may be expressed in terms of the
change in displacement of the edges. .

If e¢,' eand ey' are expressed in terms of the stress function F,

A N2 2 2]
ER-Stlt

u = n
J y=Constant dy? x? 2

T Pr B 1(wY
¥ 7 U xeConstant | & "oy 2@1@ ,de

.

S (9)

Clamped or Bullt-In Edge

If an edge of & plate is clamped, the deflection along this edge
1s zero, and the plane tangent to the deflected mliddle surface along thils
edge coincides with the Initial position of the middle plane of the plate.
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If the x-axis coincldes with the clamped edge, the boundary
conditions are :

(Wymo = ©
@

If the y-axis coincides with the clamped edge, the boundary
conditions are

7 (10)

(Wlzp = 0

(@

If the edge is clamped rigidly against eny displacement along 1ts
support, the strain in the median fibers must be zero along that edge.

The poundary conditions are
¢ ' =0
(y>x=o

Cx> =0
. y=0

or

. B Lo
x° a37'2:c=-0

C (11)
55’2 312y=o

J

The one additional conditlion required 1s agalin furnished by
specifying the dilsplecemsnts along the edges as in equation (9).
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Riveted Panel with Normel Pressure Greeter than That of

Surrounding Panels

The boundary conditions which would approximete this situstion
ere, 1f y =0 1s one of the edges,

ﬂ
(W)yao = 0
R
Qy2y=0 °
Cﬁ- 2 L, F G2
5172 uaxzyao
Pr _ 3% 1 &V
x=Constant [:axa uab'z 2 <8y> =0
J

The first two expressions are those of simply supported odges,
the third one glves the condition of zero sirain along the supports,
and the last one specifies that the displacement along the edge is zero.

REVIEW OF PREVIOUS WORK

The large-deflection theory of flat plates is gilven by A. FSppl
(reference 1), and the difficulty of solving the nomlimear equations
has besn noted by Theodore von Kermen (reference 2). The earliest
ettempt to deal with these differential equations was, perhaeps, made
by H. Hencky (references 3 and lL), who devised an approximate method
of solution for circular and squere plates when the deflection is very
large, the bending stlffness being then negligible. Following the
seme procedure, Kaiser (reference 5) solved the case of a simply supported
plate with zero edge compression under lateral loading. His theoretical
result checked closely with his experimentel data.

In the case of oirculer plates with large deflections, bscause of
the radiel symmetry, the two fundamentel pertiel differential equations
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which contain the linear biharmonic differential operator and quadratic
torms in the second derivatives can be reduced to a palr of ordinary
nonlinser differential equations, each of the second order. For both

the bending and the buckling problems, exact solutions are availlable
(references 8 to 12). The bending problem has been solved approximately
by Nedai (reference 6) and Timoshenko (reference 7) and exactly by

Way (reference 8) when the plate is under lateral pressure and edge
moment. Way gave a power-series solution for a rather lerge range of
applied load. . The buckling problem has been solved by Federhofer
(reference 9) end Friedrichs and Stoker (references 10 to 12). Federhofer
gave the solution for both simply supported and clamped edges which
ylelds accurate results up to values of N of about 1.25, where N 1is
the ratio of the pressure applied at the edge to the lowest critical
or Euler's pressure at which the buckling jJust begins. Friedrichs -
and Stoker gave a complete solution for the simply supported circular
plate for N up to infinity. To cover this range, they employ three
methods. Each of the three methods is sultable for a particulear range
of valuss of N: namely, the perturbation method for low N, the
power-series method for intermediate N, and the asymptotic solution
for N approaching infinity. There is no solution, however, for

the case of circuler pletes under combined lateral pressure and edge
thrust.

The exact solution for & thin, infinitely long, rectangular
strip with clamped or simply supported edges was obtained by Boobnoff
and Timoshenko (references 13 and 27), and the other cases were discussed
by Prescott (reference 1u), Way (reference 15), Green and Southwell
(reference 16), Levy (references 17 end 19), and Levy and Greenmen
(reference 18).

Prescott glves an approximate solution for the simply supported
plate with no edge displacement; however, Prescott’s approximation
is rather rough. Way presented a better approximate solution for the
clamped plates by using the Ritz energy method. Kalser (reference 5)
trensformed the differential equations into finite-difference equations
and solved them by the trial-snd-error method. Green and Southwell
extended the finite-difference study into finmer divisions and solved
the difference equations by means of the relaxation method.

Levy (reference 19) gives a general solutlon for simply supported
plates, and numerical solutions are given for sgquare and rectangular
plates with a wldth-spen ratio of 3 to 1 under some combined lateral
and side loading conditions. Ievy and Greenmen (references 17 and 18)
extended this solution for simply supported edges to clamped edges.
Their conditions are, however, limited to the cass in which the edge
supports are assumed to clamp the plate rigidly eagainst rotations and
displacements normel to the edge but to allow displacements parallel
to the edge. They presented a numerical solutlon for square end
rectangular plates with e wildth-spen ratio of 3 to 1 under lateral
pressure.
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In summary the problem of rectangular plates with large deflections
has beent solved by three methods: mnamely, the energy method, the finite-
difference-equations method, and the Fourler series method. These methods
are briefly dutlined in the following paragraphs.

Energy Method

The method of attack used by Wey (reference 15) 1s the Ritz
energy mothod. Expressions ere assumed for the three dlsplacements
in the form of algebraic polynomlals satlsfying the boundary conditlons;
then, by means of minimizing the emergy wlth respect to the coefficlents,
a system of simulteneous equations is obtalned, the solution of which
glves these coefficientis.

The ensrgy expresslon for plates with learge deflection is

2 _
V=ff (VQ? -qw+6[ux2+uxwx2+vy2+vywy2

L. 2 2 Wi vy
+E(wx +wy)+2p 1:lxv._)r+vy2 +ux2

1 -
- K (uyg + guyvx + vx? + 2uywxwy + waxwy)] dx dy (13)

+

where u end v eare the nondimensional horizontel displacements and w
N
is the nondimensional verticael displacement, gq = P—-z— , &and the subscripts
16Dh
indicate partiel differentietion. In order that u, v, and w
satisfy the boundary conditions for clamped edges, Wey assumes (fig. 1):

w = (1 - x2)(p2 - 72)x(bgo + bopy? + Pogx® + Dppxy?)
v = (1 - 2B)(B? - yB)y(egg + ogey? + opgx® + CppxfyP) r o
W= (l - x)2(132 - ye)e(aoo + a02y2 + 8-20::2)

where B8 = 2; u, v, w are positive in the positive directions of x,
¥y, 2, vrespectively; and 8431 bi,}: cy3 are numerical constants to be

determined later. TFor convenience, 1 1is taken to be the same as the
power of x, and ] that of ¥.
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When V is minimized with respect to the coefficients ay 3
bi,j , eand °ij , 11 simulitaneous equations corresponding to the
11 constants, are obtained as follows: -

_al.:o. ﬁL_o. _al.=0 (15)

3 - s

Ba.oo 83.02 oa,

oV . _ . ST ., OV

= = 0; = 0; = 0; =0 (16)

oo Mop Sbog bop

S g O _g; S _o, L _o (17)
= s = Vs = 3 =

30 Schp 340 denn

These equations are not linear in the constants. The first three
equations (equation (15)) will contain terms of the third degree

in the a's. FEguations (16) and (17) are linsar in the b's and c's
and quedratic in the a's. Way solved equations (16) amnd (17) for b's
and c's, respectively, in terms of a's and then substituted these
expressions in equation (15). There then ere left three equations

of third degree involving the a's alons. These were solved by Way -
by successive approximations.

Wey gives the numerical solutions for cases for which B =1,
1.5, eand 2, for p = 0.3 up to g = 210. Since he assumed the dis-
placements to be polynomials in x &and y of finite number of terms,
his solutions are essentially approximate. By comparing with Boobnoff's
exact solution for the infinite plate, Way estimated that the error of
his solution for B =2 1s about 10 percent on the conservative side.
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Finite-Difference Methods of Solution

Kaiser writes the nondimensional Von Kaxmén equatlions as follows:

\
o _ 2 PudBw
vs—gxay "axaa—y'é"K
VoF = S
% Pw 82F82w 32
Sy x oy B2 &P a"yg%”’@ r (18)
VawsM'
~

end then transforms these five equatlons into finlte-difference equations.
Hisg procedure is to assums w's at all the points and then to solve

for 8's, F's, M's, and w's. If the calculated w's do not check
with the essumed onss, he assuwes & new set of w's and repsats the
process. The work which this involves is very tedious. In fact, as

wlll be pointed out later, when the usual method of successlve
gpproximations is used, the process is actually divergent. Xaiser

solved the simply pupported square pla.ti wlth zero edge compression

under a uniform lateral pressure of L 5 = = 118.72. His numerical solutio:
Eh .
checked wlth his experimental results with good accuracy.

Southwell and Green solved four examples of the problem by mpans
of a techniqus based on the relexation method. The fundsmental
requirements for.use of the relaxation technlque are a simple finite-
difference pattern of the variables and a simple expression of the
boundary conditions. In using this, Southwell and Green expressed the
differential equations in terms of the displacements u, v, end w,
which then gave simple boundary conditions. Instead of using exact
relaxatlion patterms, they worked with the patterns whlch are glven
by the linear terms of the differsentlal equatlions end made corrsctions
from time to time, the nonlinear terms being combined with the
"residuve.’
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_ _ ' ™
v 2,3 [Pwldn, v 1%V 1 WF|, Fydw, 2u
Vw D+h2 52 8x+u5y+2(6x>+2u<5§>_ +By2 By+p'8x

TORIGIRES1CR -2 )

g’:‘c(%*%? +}ﬁu+%%&@2 +<;£>2T+Hg£v2w=o >(19)
SRR e H OB O Bt -l
/

Tt is readilly seen that, in order to obtain a simple expression
for the boumdery conditions, not only is the number of the pertial
differential equatibns increased from two to three, but also the form
of the terms involved becomes more complicated and the number of terms
is inoreased. This technlque proves very leborious Iin practice.

Equation (19), expressing conditions of equilibrium, could have
been derived by minimizing the total potentlal emsrgy V, which 1s
glven by the expression

2
IV
;§5=11+12+;3 - (20)
where
2
I1=£ff@2‘9 ax ay
Ia:%_—ff@nz+eyy2+2pemceyy+3-'—-2-—£em2>dxdy
and

I3 = - w dx dy

where o 1is the lateral loading.
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The relexation technique consists first in eassuming & set of
answers and then changing them according to the relaxation pattern
and bowmdary conditions. To obtein a more rapld convergence, Southwell
and Green multiplied the glven values of w by k and substituted
them Into the ensrgy expression to obtain

By _ ;
27 e kl"Ie + oy (21)

vwhich wes then minimlzed with respect to k; that is, by setting

QY =0 %o
o give

2KI) + MST, - oIy = 0 (22)

From the third-order equation (equation (22)), k can be obtained and
a set of values for w vhlch are closer to the trus values can be
dorived from veluss of k. ’

Fourier Serxrles Methods of Solutlon

Lovy and Greermen obtained gemsral solutions of the rectangular
plates (fig. 2) under combined bending and side thrust with large
deflections by means of Fourler series. Thelr epproach to these
problems is glven in the following discussion.

Simply supported rectangular plates.- In order to satisfy the boundary
conditions, w ls assumed to be glven by the Fowrler series

nsinm’-g-csinng (23)

w = Wm D

m=l,2,3 n=l,2,3 ’

The normal pressure mey be eXpressed as a Fourler series

o0
T oy
p, = S E Pr,s sinr 3 sin s (2k)
r=1,2,3 £=1,2,3
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For the compatlibility equation to be satisfled, F must be given by
- 2 - 2 -] (-]

Dy Pyx = Ty
R E E by q COS P F 08 4 3 (25)
p=0,1,2 ¢q=0,1,2

where Dx and Py are constants equal to the average membrane pressure
in the x- and y-directions, respectively, and vwhere

E

'bP’q= 2 b 2&2(31+32+33+B’++35+36+B7+38+B9) (26)
NI
and
p-1 g-1 -
2
Be > S [mto - me - 0 <32 - 0%y gy

k=1 t=1

if q#0 and p # 0.
By =0 if ¢=0 or » =0.
o g-1

; g[kb(k +p)(a - t) +¥3(q - t)ﬂvk,twk@,q_t

b
n
i

if q # O.

td
V)
1
o
R

q_=0-

w g=-1
Z Z[(k + p)it(q - &) + (& + p)2(q - t)a:]wk+P ¥, g
k=1 =1 S

v}
W
"

if g £0 and p # 0.

B3=O if g=0 or p=0.
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By = Zi kt(p - X)(t + q) + k(¢ + q)] Vie, £¥p -k, tq

k=] t=1

if p # 0.

Bl;.=01fp=0.

Bs = Zi I:kt(t +q)(p - k) + Kzt]‘fk tq¥p-k,t -

k=1 t=l

iIf p£0 and q # O,

Bs =0 if p=0 or q = 0.

Bg = iz [_kt(k +p)(t + q) - K2(t + q)] e t¥kep, trg

k=1 b=l
if q # 0.
Bg =0 1f g=0.
B, = ZE E:‘b('b+g_)(k+p) -k2t:| Vi trgieep, b
k=1 t=1
iIf g #£0 amd p # 0.
Br =0 if p=0 or g =0.

Bg = ZZ[H(L: )6+ @) - (4 D)2+ s e
=1 t= e e T T

ko5
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if ¢ #0 and p £ 0.

Bg=0 4f p=0 or ¢ =0.

-} <o

B9 =ZZ|:(1: + p)(t + @)kt - (k + p)2'b2]wk+p
k=1 t=1
if p # 0.
39 =0 if p =0,

The equilibrium equation is satisfied if

W
s o .k_,t

25
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2

Pr,s=D"r,s< :"'5 ”2) - By, (72 é-pyh

lla?‘ba ZZ(s-t)k-(r-k)tb -k, 8-k, b

k=1 =1

2
Wk + - k(t
[ (kx + r) (v + s):] Dy, t¥iewr, s

I
M,

[(k"'r)(t""‘j - ]bkt-i-skﬂ:t

@Ms
Ms

i
[ ]

kzl g [tk - (k + r)('b + s):l k-'-r,'bwk ts

2
[(‘6 +8)k - (k + “)‘E' Prorr, t+eVic

M

N
Mg

2
[tk e - Kb+ 5)__] brrie, t¥c, tes

ot
&

s _
[(t +8)k + (r - k)‘_‘] Prvie, 8%, &

g
] Mg

i
[t}

4]

2
[(s -t)(k+r) + tl;l P, s=t¥ler, ©

I

3

+
N
i

2
[(s - t)k + t(k + r)] 'bk+r’s+twk,t} N €10
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When the lateral pressure is given, Pr,g can be determined.
Equation (27) represents & doubly infinite Pamily of equations. In
each of the equations of the family, the coefflcients bp,q may be
replaced by their values as glven by equation (26). The resulting
equations will involve the known normal pressure coefficients Pr,s;
the cubes of the deflectlon coefficients Wy n, and the average
menbrens pressures ln the x- and the y-d.irec%ions, Dy and T, . -
respectively. Values of p and p, can be determined from%he
conditlons that the plates are elther subJected to known edge compressions
or known edge displacements. The number of these equations is squal
to the number of unknown deflection coefficients Wi, n e

The procedure now is, with the known values of Pr,s, To assume Y11

end to solve the other coefficients by successive a.pprox:hna.tion. However,
the work lnvolved 1s tremendous, and 1t is very easy to make mistekss.
As illustrated by Levy in a relatively simple case of a square plate,
if six deflection coefficients are used, then each equation contalns
60 third-order terms. And for each givsn applied normal pressure
these six 60-term, third-order equations must be solved by successive
approximations. - '

Clamped. rectangular plates.- Levy and Greenman solved the case of the
clamped rectangular plate by assumling that the edges are clamped rigidly
against rotations and dlsplacements normel to the edges but are permitted
to move freely parallel to the edges.

The required edge momsnts my and m,. &are replaced by an

auxiliary pressure distribution ps(x,y) near the edges of. the plate.
The auxlllary pressure can be expressed as a Fourler series as follows:

pa(x,y) = Z _EII. sin = 4 Z ;“";xs sin §%,Z (28)
r=l’315 33'1,3,5

By writing m, eand m, as Fourler series, where kg and k. are
coefficlents to be determinsd,

e S e

r=1,3,5

> (29)
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Inserting equation (29) into equation (28) gives

-]

Pa(x,y) =(§>2p i Z (rkg + sk,.) sin r_asg sin E.? (30)

r=1,3,5 8=1,3,5

On combining the auxiliery pressure pg(x,y) with the normel
pressure p,, equation (24), the following equation is obtained:

po(x,y) = Z Z Pr,g sinr ,-;—'-m sin s ’.‘-BZ ) (31)
r=1,2,3 8=1,2,3
where
Pr.s =G-:>2 (rpkg + spk,) + Pr,s’ (32)

Since the edge moments my end my have been replaced by the
auxiliery pressure distribution pa(x,y), the general solution for the

simply supported rectangular plate (equations (23) to (27)) cen be
applied to clamped plates, and the remaining problem is to determins
the values of kg and k.. These values are obtained by use of the

boundary condition that the slope at the edges of the plate is zero.
Equating to zero the normal slopes along the edges glves

B0 S S T
I=O,x=ﬂ. m’__‘l,3,5 n=l,3,5

~

> (33)
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Equation (33) is equivalent to the sst of equations

\
O=Wl’l+3wl’3 +5Wl’5 + ase
0= es e >
w3,l + 3w3,3 + 5W3’5 + (3%)
0= ws’l + 3W5,3 + 5“'75’5 F+ e
J

} The deflectlon coefficilents Wy ,, must now be solved from the
family of equations (equation (27)) for the linear term in terms of the
cubic terms and the pressure coefficients p,. j. The expressions for Yin,n

b4
thus obtained are now substituted into equation (34), and the expressions
for pressure coefficients p, g are obtalnsd from equation (32). The

resulting family of equa.'bions’conta.ins linear terms of pk,. and kg
end the cubes of the deflectlon functions Wy p.

The method of obtalning the required valuss of the deflection

coefficients Y, n and the edge-moment coefficlients pk, and J-kas
W

consists in assuming values for -—i—’-‘l‘ end. then solving for 29'1,

W Eh

1 .
-Eé s «++y Pkg, Dk, ... by successive spproximations from the

simultensous equations. The procedure is even more laborious than that
for simply supported plates. Two numerical solutions are given, namely
solutions of the bending problem for a square plate and for a rectangular
plate with length-width ratio of 1.5. '

FINITE-DIFFERENCE ZQUATIONS OF BOUNDARY-VATUZ PROBLEMS

Scome fundamentel concepts about the finite-difference approximation
mey be worthy of mention before the partial differential equations are
converted into finlte-difference expressions.

It is assumed that a function f£(x) of the varisble x i1s defined
for equidistent values of x. If x is ons of the values for which f(x)
is defined, f£(x) is also dsfined for the valuss of x + k Ax, where Ax
is the intervel betwssn two successive velues of x and k is an integer.
For the sake of simplicity, the valus of the function y = f£(x) for
X + k &x may be written as:

f(x + kAX) = FxikAx
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The f£irst difference or the differsnce of the flrst order Ayx

of y at the point x 1is now defined as the increment of the value
of y obtainsd’in going from x to x + Ax:

Nyy = Txarx =

It is seen that the incremsnt in the direction of increasing x has
been arbitrerily chosen; Ay, could also be defined by the difference
Yx = Yx-Axe This process is continued end the increment of the first

difference obtalned in going from x to x + 4Ox 1s called the
difference of second order of y at x; that l1s,

2
KTy = By ~ Nx

Q’x+2Ax - yx+Ax) B Qx-hAx R4 x)

= VxioAx T Fxax t Iy

In general, the difference of order n is defined by
AR n-1 n--ly
,')"x =A yx +Ax "~ A x

If Ax 1s chosen equal to unity,

Yx+nx = Ix4n

‘By the use of this notation, the sequence of differences becomes



NACA TN No. 1k25 . 31

Ny = x4 = Tx

x 7, x+2 2‘yx+1 + yx
A3.Yx x+3 = 37. E T
n
A =y (-1)F —— Vrine (35)
x ; ri(n - r)! xn-r

In many physical problems only differences of even order occur.
In such casges 1t l1s more convenient to define the differences

A Iy in the followlng way:

2
ATz = Vg1 - Ry tIgyy

That 1s, Aa.vx is the increment of the first difference taken on the
right- and left-hand sldes of the polnt x. In geoneral,

ny = 22y ) (36)

In this case a difference of order 2m represenis & linear expression
in yxem, Yx-mi1s cees Jxs ***s Jxim-10 Jxm"®

In replacing partial derlvatives by the finlte-difference
expressions, the differences corresponding to the chenges of both the
coordinates x and y are considered. With the notatlons as shown

in figure 3, the first differences at a point Am n 1n the x- and
the y-directlions are, respecitlvely:

Amon = Ymel,n T Ymon

A_rwm,n = ¥mon+l T ¥mn
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The three kinds of second differences asre as follows:

j
Az:c"’m,n = Axewm,n

+ W,

- 2, m-1,n

W,
m+l,n m,n

2
Sy m,n

2yy¥m,n

= Vundl " Pmn * Ymon-l

= A.sy""m+l‘,n - A.srwm_,n

= Gm+l,n+l - wm+1‘,n> - 6m,n+1 - Wm,rD

Lyy¥m,n

-w W, W,
® ¥mdl,n#l ~ "mél,n  mo#l  myn

)

The three kinds
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(37)

of fourth differences, which will be used later, are:

\

Aooexm,n = Ax ¥myn

= Ymip,n 1“"-m+l‘,n. + 6wm,n - ll'wm-l,n *Wpeoon

by

Ayyyy¥m,n = &y ¥m,n

= ¥monip T ll""’m‘,n.+l + 6wm,n - 1""”m,n-l * W n-p > (38)

wm:n B Avawm:n
= ¥l nel T maa,n Y Vel ,n-1 T zwm,:n+1 * h'wm,n
" VYol T e ne ¥pe1,n ¥ ¥m-1,n-1
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Partial derilvatives mey be approximated by finite differences as

follows:
oA w4y
x &’y &y
Pu A R A
a2 a2’ ayz Aya
3% =A1;yw
x oy Ax &y
P VR,
Ay

22 32 = a2y

™~

(39)

When these relations are used, the fumdamental partiel differential

eguetions:
NG B BNC D g
Ax A2 Ay gt \ax oy xBoayR

L > )1 2 2,
LA L LS a@_z_{

AT A AgF agw

equations (1) and (2) may be replaced by the following difference

\

(40)

&P Ay© Ox Ay Ox
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If Ax = Ay = Al, end the relations (37) and (38) are used,
equation (4O) may be written as

Fm+2:n B aFm"'l:n * 2OFm,n - 8Fm-l,n + Fm-e_,n + Fm,n-l*z &y, L

- &, ;-1 * Fmonep * gl na1 * Foey n-l F Fped paa Y Fpg po

= Gm+]_,n+l " Vmel,n T Ymonsd T ) <m+l n ~ &y n * Wm-l,rD

X Gm_,nﬂ " 2Wyn wm,n-]) (x1)
and.
Ymip,n ~ 8“rm+l,n + 20wy n - 8"rm-]._,n * ¥mo,n F ¥ponee T 8Wm,n+l

- 8"Tmn-]."' m,n-2 + 2wy, +1,n+1 "'2"’m-l-ln-;l."'2w m-1,n+1 + 2w m=-1,n-1
- 20.8(22)"p + 10.8 [(m’nﬂ - Py + Fp n_D

xGm'l'l,n-Qw -lID <m+ln- m,n +F-er
X Gm,n+1 - 2y o ¥ wm,u-]) - 2€m+l‘,n-!-l " Fnia,n T Fmpper t Fm_,:rD

X Gm+1 ol " ¥mialp T Ymna T wm,n)] (x2)

In actually writing these equations for each net point, it is more
convenient to employ the finite-difference pattern or so-called
relaxstion pattern as shown in figure & rather then to substitute
directly into egquations (41) end (k2).

In terms of finite differences, the boundery conditions can be
formulated in the mamner dlscussed in the following peragraphs.
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Simply Supported Edge
The boundery conditions for the simply supported edge y = 0 eare:

N

and, for plates wlth zerc edge compression:

(eﬁ) co
y=0
or, for plates with zero or known edge displacements:
1 2 |
IR -ROIES ,

Tet n = 0 denote the edge points along y = 0. The finite-
difference expressions for the boundary condltlions are:

wm,o =0 )
’ s
CONS
; 4 (1)
G,
m,0




36 NACA TN No. 1425

for plates wlth zero edge compression and
S [a2e - wa2r - 3 (s
e )

wvhere n =0 ani n =k denote points along the two edges y = 0 and
¥y =Db, respectively, and 1 dJdencites eny point along the line x = Constant

Clemped Edge
The boundexry conditions for the clamped edge y = 0 arxe:

(W)y=o=0

@‘;Dyw -0 ]

Er I .o
3y2 uax":";r:r---o

HERE:S Gl

With the seme notatlions as were used for the slmply supported edges,
the finlte-dlfference expressions are:
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W,

m,0 = 0

(A'.v"’)m,o =0
CA.YQT B "Ax%m,o

S [a w36

Riveted Panel with Normel Pressure Grester then That of
Swrrounding Panels-

J

The boundery conditions which approximete this case are:

(w)ygo =0

G&
ay2 y=0

)
ay2 axEyao

fx[?_;g i 1(&)]

if y =0 18 one of the edges.

Expressed in terms of finite differences, these conditions

‘become :

37

(46)
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<

Wm0 = 0

(AY% m,0 =0
(Ay'zF y “szam,o =0 ) (47)
-1

oo hot],

H

~

The boundary-value problem which epproximetes the riveted sheet-
stringer panel subJjected to wniform normel presswre higher then that
of the swrrounding pensls mey be forsmlated in terms of finite
differences.

In order to start with a simpler case, the square flat plate will
be dlscussed, since, on account of symmetry, only ome-eighth of the
plate need be studled.

The finlite-difference aspproximetion of amy differential equation
requires that every pcolnt in the domain to which the equation applies
must satisfy the initial differential equation. If the polnts to be
teken are infinite in number, the solutlon of the difference equations
1s the exact solution of the corresponding differential equations. But
the points to be taken are finite in number, the solution will be
approximate, and the degree of approximation will increese a2s the
mumber of points taken is reduced.

Since the diagonals of a square plate are axes of symmetry, 1f
the boundary oomditlons along the four sides are the same, Wy e =W g
b4 2

and Gi,k = ek,i‘ The conditions for zerc edge displacemonts mey
Pe put into different forms. Since

u=f%dx=f.€xdx-f%<g£>2dx-0

.

then

-

@ =



In terms of finite differences,

k-1
1 1 2
%(Ex)o,i + (GI)l’i + sne + (Ex)m’i + eee + 'é'(ex)k,i = 5(&) ;(Axw)am,i

k-1 5
= {ax)? Z v, -w
o - m+l_,i m,:l

Similarly, in the y-direction,

ol

(ey)

3 /4
¢ Ly

r

k-1
n + (_Ey)_' " + eee F+ (GT)'I n + essn +%(ET)‘|’IF = %(M)E y- (%v)ei.n
L ¢ ays e [ = s

, k
> . 2
dir)2 -
= Q(AV) gei,rﬂl wi,a
n=0

The sum of these two equations and the fact that Y3k = V1 (Gx)i,k = (Gy)k,i,
and Ax = Ay = Al glve

1 1

© k-1
DN C TR
- (N)E < s 1,n+l i,n

(48)

GSHT *ON NI VOVN

6¢€
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Now,

Lr  Fr, Fr_ Fr

EI'+ Gy ay2 p,a—x—é- axz aye

N
= :—;{%+:—y§>(l-u)
D -

2
Note that V~ = B_?__ + L. Eguation (48) then beccmes
x° 3y

@1,0 + 2 V2F>i,l + oo + 2@@1’][1 + see 2v23>1,k-1

~ k-1

This slmplification 1s not nscessery, but 1t is u.sefuli in applying the
relaxation method.

n = l.- On referring to figure 5, it 1s seen that points 1' and 2'
are fictitious polints placed outside the plate In order to give a
better approximstion to the boundary conditlons.

-;B:;r the wse of p.2 = 0.1 or u = 0.316228 for aluminum elloy,
the compatibllity equetlon becomes

20F, - 32F; + &, + 4F) = K, (50)
where

*2 2
By = (wp - 2wy ¥ wp)~ = (2w - 2wp)
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Then the equllibrium equation is

20w - 32wy + Swp + bw . = p' + 10.8|2(2Fy - 2Fg) (2w - 2wp)

- 2(w, - 2wy + wy)(F, - 2Fy + FO):] (51)

where p' = 12(1 - lJ-Q)(Al)hP = 0.675p, since Al = %-

The boundary condltions are:

() (bF; - WF,) + (Fg + 2F, + Fq: = UFy) =8;

2 (vy - wo)?
= The boundary-value problem
(L - u) 0.34183%6 .
now determines the veluwes of w uniquely and the values of F +to within
en unknown constent. Since the actual valus of the constant 1s irrelevant,

it may be defined by letting ¥, = O.

vhere S = (wy - wo)2

Sclving Wat, Wot and Fl' from the boundary condii:,ions.gives
the following result:

Wll = -'Wo

'W'21="'Wl=0

g
k.
[

Fy + 2(1 - u)Fl
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, When these values are substituted 1into equations (50), (51), and (4),
the resulting equations are

- 2
16F - 26.52982LF, = -3v,
l6wb =p' + h3.2wab L (52)
w02
-L4F 1.367544F, = —————ee
o+ 1-35TM = Siiees

/

The eight or nine significant figures in these equations are dus to
computations made with a computing machine having 10 columns. In order
to get satisfactory results in subsequent computations it is convenlent
to retain a number of filgures beyond those normally considered Justl-
fiable because of the precision of the basgic date.

n = 2.- With reference to figure 6, points 3', 4', and 5' are again
fictitious points. The compatibllity equations are:

DOF - 32F. + 8F_ +4F_ =K
o - 38F) O, +E = K,

-BF, + 25F) - 167, - 8, + 6y + Fyu =K P (53)

2 - L 22F Yo - léF 2F 2F . =K
FO ,6El + o * 3 y t 5 + 2F), -

where K5, K;, and X, are equal to (Axyw)Q - szw Ayew at points
1, and 2, respectively.

0,
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The equilibrium conditlons are:
20wg - 32wy + Sy + birg
=p' + 21.6 l:(ao' + Bg")(wy - wp) - 7'(wg - 2wy + w2)]
84y + 25wy - 16w, - 83 + Gy + Wy
= p' + 10.8 l:al'(awa - 2wy) + BL'(Wp - 2wy + w3)
-2yt - w3 - o + wl):l B

Wg - 16wy + 22wy + lwg - 16wy + 2wy + 2wy,

= p' + 10.8 [@2' + Bg}@h— i L +WD N 272'65 - 2w, +w2>]

J

where a', B', ¥' are Axa.ﬁ', AyQF, AJRYF at the respective points
indicated by the subscripts.

The conditions for zero edge displacements aret

"2Fo~3Fl+)+F2-2F3+2F}++F31 =Sl

(55)

Fo 55‘2+2F3+F5+F)+1 =32

where

1 2 2]
Sl = m [(‘W’l - WO) .-+ (w3 - ‘Wl) N

- wl)2 + (wy - w2)2

= ——
S2 = 53mak |2
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The boundary conditions are:
(2) w3 =0, wy =0, w5=0
(v) W3t ?2v-r3 +w =0
Wyt = 2wy + Wy =0

W,)-._t -2W5 +w,+=0

(c) Fp -2F; +F u(aFu-2F3)=0

3|
Fp = 2Fy + Fyr - p(Ff5 - Fy + F3) =0

Fh-2fﬂ‘5+F5| =0

For the same resson as explained 1n the case of n =1, 1let F5 = 0.
Solution of the boundery-comnditlons equatlions gives

(a) W3t = =Wy

Wyt = W
'W5| =0
(é) F5! = -Fll'
th = QF)-I- + |.L(F3 - QF)_’_) - F2
Fyr = 2F3 + u(aFy - 2F;) - Fy
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The combination of the foregoing equations (d) ard (e) with equations (53),

-8F, + 2UFy - 16F, - 6.632U56F + 6.632#561?4 =K
oF - 16F; + 20F, + 4.632456F5 ~ 13.264912F;, = K, L (56)
-2F, - UFy + 4P, - 0.632456F; + 2.632456F), = S;

F, - 63*2 + 2.31622&'3 + 1'3675‘*“3'1» = S,

end

[20 + 21.6(ay" + By + 7o’z_lwo |

- [32 + 21.6(ay' + B! + 270')]wl + (8 + 2L.670" )W, = D'
~(8 + 10.88; "y + ]:24 + 21.6(aq" + By + ;Tilwl |
]:16 + 12.6(ay " + 7'1'):]"2 =p' } (57)
[16 + 10.8(ay" + 52')]w1
[go £ 2L.6(upt + By + 72'_)—_]w2 = p!

2wp

+

vhere 7p! = 12(1 - p2)(A'l.)h'3 = 0.0k21875p, since Al -%.

n = 3.- Reference is made to figure T and to the fact that points 6',
71, 87, and 9* are fictitious points for reasons explained in the case
n=1; then the campatibility equations are .as follows:



6 NACA TN No. 1kg25
20Fo - 32_Fl + &E‘e + }-I-FB = I{o
-85‘0 +'25Fl - 16F2 - 8F‘3 + 6F)+ + F6 = Kl

2Fo-16Fl+22F2+1+F3-16Fh-i-2F5+2F7=K2

. : 8
FO '&.l+}-|-F2+20F3 ‘l&E’h+2F5‘&'6+ll-F7+F6| ”I% ( (5)
3F) - &, - 8F3 + 23F) - &5 + 2Fg - &, + Fg + For = K
2Fp + 2F3 - 16F), + 20F5 + WP, - 16Fg + 2F + 2Fgr = K5
J

where K,, Ky, K,, K, and K5 are equal to [@WWE _%2%21;]

at points 0, 1, 2, 3, 4, end 5, respectively. -
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The equilibrium equations are:
20wy - 32wy + By + bwg = D' + 21.6[(%' + Bo")wy - wo)
- %' wp - 20y + 1~r2)]

"8“‘0-!-25“1'16?2-8973-!-6??)4_

=p'+ 10-8[2@1’(w2 -wy) + Bl'(wo - 2wy + wg)
- 27l'(wl T Wp - w3 +'wll_)] -
2wy - 16wy + 22w, + bwg - 16wy + 2w

=p! + 10.8Ea2' + Ba’) (wl - 2wy + "’h-) - 272'(w2 - 2w + W5)_-J

Vg -8wl+l|-w2+20w3 -16m+2w5-8w6+’+w7+w6,
=p' + 10'8,_;‘3'(_2‘_'1; - 2w3) +_ 53'('"1 - 2wy + vg)
- 273'(w3 -wy - Wg + w.?):l
3wy = 8w, -&f3+23;1¥-&r5+2w5-&¢7+3w8+w7:
= p' + 10.8ay (w3 - 2wy, + w5) + By '(wp - 2w, + W)
- 27 0, w5 - g + "8)]

2w2+2w3-16w1,,+20w5+1m7-16w8+2w9+2w8.

47

F (59)

=p! + 10.8[:(a5' + [55.')(w1[L - oWg + wg) - 275’(w5 - 2"8 + w9):|
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where «', B', and 7' ave AzaF: AyQF, A-WF at the respective points
corresponding to the subscripts, and p' = 12(1 - ue)(AZ)l‘Lp = 0.00833333p,

since Al = 'é‘.

The conditions for zerc edge displacements are:

-
-2310-2Fl+)+F2-5F3+)+F’-|--2F6+ﬂ17+F6’ =32
Fo-le2+3F3-3F4+2F5+F6-2F7+F8+F7.=82 > (60)
F1+?5'2'2F3'th'EE'5+F6+3F7+F9+F8’=S3

where

k-1 o
RPN R
i l - 'J' m+l’i m,i

The boundary conditlons are:
(a) w6=0, w7=0, w8=0, w9=0

(b) w6, "25!‘6 +‘W'3=0

9|
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(¢) F3 - 2Fg + Fyy - u(2Fy - 2Fg) =0

Py - 2F7 + T, - w(Fg + Fg - 2P) = 0 | .

Fg - 2Fg + Fgu - u(F9 +Fq - 2F8) =0

F,., - 2F 0

+F8

9! 9

Solutions of the boundery-conditions equations glve

(a)

Wee = -w3
w7, = W),
w8, = W5
w9' =0

(e) Fe, = Ty + 1.367544F, + 0.6321565'7
Foo= By + 1.3675kkF, + 0.316228F¢ + 0.315228Fg
Fgy = Fg5 + 1.36754kFg + 0.316228F7
For = Fq

where F. =0 1s assumed for the same reason as explalined in ths case

Of n=l.
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Combination of the foregoing equations gives:

20Fy - 32F) + &, + Wy = K,
-8y + 25F; - 16F, - &3 + 6y + Fg = K
Ho - 16F) + 22F, + WPy - 16F), + 2F5 + 2F; = K,
Fo = 8Fy + U4F, + 18F; - 16F), + oF5 - 6.632U56Fg + 4.632456F, = K4
3F, - &, - &5 + 22F), - &y + 2.316228Fg - 6.632456F
+ 3.316228g = K, |
F, + 2F3 - 16F) + 185 + 4.632456F,; - 13.264912Fg = K
-2Fg - 2Fy + WP, - 6F5 + #Fu - 0.632U56Fg + 2.632U56F, = 8,
Fo - UFp + 3F3 - UF), + 2F5 + 1.316228¢ - 0.632456F,

+ 1.316228Fg = S,

Fy + 2Fp - 2F3 - 2F) - 6F5 + Fg + 3.316228F, + L.36T5h4Fg = 84

/

h(61)
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end
| | R
[20 + 21.6(ayt + Bg' + 70';on - Esa + 21.6(ay" + Bo' + 7°'ilwl
+ (8 + 21.670>w2 + st ap

- <8 + 10.8Bl>wo + 1}5 + 21.6(aq + B! + 71’ilwl

- EL6 + 2L.6(a ' + 7].@ W - [8 +10.8(B " + 271'5]1.’3
+ (6 + 21.671")wy, = 2'
2y - EL6 +10.8(a, " + 532')]w1 + [22 + 2L.6(a" + By + 72')]w2
+I1Lw3 - E.6 +10.8(a," + By' * hfg'ilwu
L(Sa)
+ (2 + 2:!..672')7,r5 =p! 1
Wg - (8 + 10.853>wl + hwe + [19 + 21.6(¢Bt ',,_ [33! + 73l):]w3
- [16 + 21.6(a3' + 73'2"’1; + 2w5 = p!
3wy - (8 + 10.88y")w, - (8 + 10.8ay *)w3

+ [22 + 2L.6(a," + By' + mﬂm - [8 + 10.8(a, " + 271;’)]?5 =o'

o, + 2y - El.é + 10.8(::.5' + ;35') Wy,

+ [18.4- 21.6((1.5' +.$5' + 75') w5 = p'
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METHOD OF SUCCESSIVE APPROXIMATIONS

Explanation

ATter the boundery-value problems are oxpressed in terms of
Tinite-difference equations, two sets of simultameous equations are
obtalned. The first set consists of the compatibllity equations and the
equations specifyling the condition of zero edge dlsplacements. These
equations conteln linear terms of the nondimenslonal stress functlon F
and the second-order terms of the nondimensicnal deflection w, and
are of the form

COOFO + GOIFJ_ + cae + cOnFn = KO

°10Fo + chl + e + °lnFn =K._L

A | (63)

lOF +c'lll+-co+c'ﬂn=sl)

where Ky = @xyxbg CAx )(AY%D a.t points O, l a.nd. so forth,

_2
ond to the subscripts of K; S
corresp Ing subscripts o H g = I :(Ax‘am,i’

and cop, ©Cgys *++s ©'39» ©'1ys, +++ &re glven constants.

The second set consists of the equilibrium equations, which contain
the linear terms of w with coefficlents invelving linear terms in F
and are of the form

Goo + Do®'o + 2ooB 0 + boo” @ Vo
+ 601 + baa'y + 25 B + b"o:ﬁ’@"'l

+ oees GOn + bop'o + D'opB o *+ 'b"On?"QWn =p'



NACA TN No. 1425 53

where a' =APF, B' =AP°F, 7! = A F at polntg 0, 1, + + «
corresponding to the subscripts of a', B8', 7', and agy, 801, ¢ . .,

bOOJ bOl’ LR ) b'OO’ -b'ol_, e o ey, “oo, "01, v s o« &re Si'VEIl
constants. . .

If a get of values of w 1s assumed at each of the net points
and the values of K; and S; are computed, eguation (63) becomes

8 gystem of linser simultarsous egmwations in F and can therefore
be solved exactly by Crout's method for solving systems of linear
similtansous equations (reference 24)., After the velues of F have
been computed from equation (63), values of o', B', end ¥' can
be found without any difficulty. Then equation (6L4) becomes another
system of linear simultaneous equatlons and may be solved exactly by
Crout's method again. If the values of w found from equation (64)
check with those assumed, the problem is campletely solved.

In most cases, howsver, the values of w will not check with _
each other. By following the usual method of successlive approximations s
the computed w's will now replace the asswumed onss and the cycls of
computatlons will be repeated. If the value of w at the end of the
cycle still does not check with the one assumed at the beginning of the
cycle, another cycle wlll be performed. In this problem, however, if
the ordinary method were followed, the resulis would be found to diverge,
oscillating to Infinity. Therefore, a speclel procedure must be devised
to meke the process converge.

A simple case will be examined first. In the bhoundary-value
problem in which n = 1 undsr the normal presswre D = 100, egquation (52)
can eeaslly be reduced to the form .

- —
16 + 37.6908wn2

¥o

wod + 0.42450Tw, - 1.790888 = 0 (65)

The third-order algebraic equation can easily be solved, and the roots
of thls equatlon are

Wy = 1.098254 and (-0.549127 t 1.1528781)
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For the physical problem, only the real root is of interest because
the imaginary roots do not have any physical meaning.

An atbempt will now be made to solve equation (65) by the usuel
mothod of successlve approximations. It is assumed that _

Wo = 1.200000, wWoZ = 1.4L0000

67.5
= ——iee = (960516
Yo = 7o ok 9005

Wol = 0.922591

If it is assumed that w02 = 0.92259). for the second cycle and that
the value of w02 found from the second cycle is the valus for the

third cycle, and so on, the followlng values of woe are found from
various cycles: :

1.767416, 0.667554, 2.68932h, and so forth.

These valuss are oscillatorily divergent. A plot of thsse values
against cycles shows that they oscillate about the true value 1.206161,
end the true valus 1s approximately the msan of the values obtalned
fram two comsecutive cycles (fig. 8).

If W2 = £(1.450000 + 0.922591) = 1.181206 1is taken as the

assumed. value of w02 for the second cycls, and thse mean of this

value and the value found from the second cycle are taken as the
essumed value for the third cycle, and so forth, the values of w02

are found from various cycles as follows:
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Cycles 2 3 b 5
Woo assumed 1.181296  1.212550  1.204658 1.20652k
woo found 1.243805 ° 1.196766 1.008390 . 1.204526
Cycles 6 | 7

w2  assumed © 1.206075 1.206182

Wo2  found 1.206289 1.206131

This process 1ls convergent and W, oconverges to the real root of
equation (65). The velue of Wo found at the end of the seventh cycle
is 1.0982L0 and is accurate to four figures at the end of the fifth cycle,
in which case 1t is found to be 1.098010. The results are plotted
against cycles in figure 9.

It is to be nmoted that K, = -3wy® in the case of n = 1. The
velues obtained by the method of successive approximations would
converge if were assumed to be the mean valus of two consecutive
cycles. It is found that this convergent property is the same for n > 1.
If the mean of K's or S's found from two comsecutive cycles l1s
taken, the values are convergent but are oscillaetorily divergent if the
usual way of successive approximations is followed.

It may be pointed out here that for the speciael cese n =1, 1if
the mean of the velues of w, from twg consecutlve cycles is used, the
values are also convergent, na if wy= Ffor the second cycle l1s
assumed to be equal to the sum of 0.6 times the assumed value for the
first cycle and O.4 times the value found from the first cycle, and
so on, the convergence is much more rapid (fig. 10), but this result
i1s not true for the cases with n > l.

The repidity of the convergence depends on the accuracy of the
assumed values of K's and S's for the first {riel. The deflection w
from the linear small-deflection theory cen easlly be determined. When p
is small, the values of w so determinsd would give e first approximation
to the problem. It is convenlent, therefore, to start the computetion -
when p is small and then to conslder the cases when p 1s large.

Also 1t is advisable to begin wlth but a few net points and then
gradually to increase the number of net points. For example, consider
case n = 1l. When wy is found for a certain small p, a

curve of Wy against p can be plotted because the slope of the curve
at the ori can be determined from the small-deflection theory. For

& larger valus of p, w,; can now be estimated by extrapolation. For
n=2, the value of wy found for n =1 can be used as a first tridl.
However, W, and w3 &are stlll difficult to estimate. In order to

obtain first approximations to these quantities, the ratlos w, /wo
and w3/wo may be found from the small-deflection theory end the values

»
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of w, end W3 computed by multiplying these ratlos by ths estimated .

value of wy. Whsn the deflections have been assumed at every point of
the net, the values of K and S8 can be computed. These are the values

which may be used as a first trlal. By successive approxlmations, the
true valuss of the w's are then dstermined. The values of Wy and

‘the (wn/wo) 's eare now plotted ageinst p +to estimate the corresponding

values at a larger p. The values estimated by extrapolaiion may be
used as the triel values corresponding to thaet p. The process lis
ropeated until the meximum p 1s reached. For n =3, W,y from n =2

is uged as a first {trial; the remalindsr of the procedure ls the same
as before.

Sample Calculations

Finlte-difference solutlons of small-deflectlion thsory.- The small-

deflection theory of the simply supported sgquare plate will be studied
first. The dlffersntlal eguatlon is

v = 2 - - (66) _

and the boundary conditions are '

w =0 along four edges

52

a—;—‘-g=o along x =15 % (67)
2 .

:—;%:O along y='_'_‘g-

whera &a 1l the length of the sldes.
With equatiﬁns (66) and (67) written nondimensionslly by letting

w‘=%, p'-_—.Ehp"—f-E, x'=§, a.nd.y'=%, whore w', p', and x' )
and y' are nondimensional deflection, pressure, end lengths, respectively, '
and with the primes dropped, the boundary-velue problem is:
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Vow = 12(1 - p®)p ]
w=0 at x='%—, y:'.%

g—i—g=0 at xa'%

By 0 ar y-ik

ay2 2 -

By reteining the notations previously used, the finlte-difference
equations for the problem are

_\
Ak%w + aaxyzw +-Ath = pt
(w) 4l = 0

x=threts >
(68)

CONEL
@y@yﬁ% =°

S

where ' = 12(1 - pz)(AZ)h' .

For n=1 (fig. 5), the finite-difference equation, after the boundsry
conditlons are employed, becomes

161-70 = p!
therefore,

W = 0.0625p"
= 0.042188p

for p.2 = 0.1.
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For n =12 (fig. 6), the finite-difference equations, after the
boundery conditlons are lnserted, become

j
~8wg + 2k - 16w, = p' P (69)
I

When Crout's method 1s used to solve these equatlons the solutions
of equation (69) are

wo = 1.031250p' = 0.043506p
wp = 0.750000p"' = 0.031641p
Wy = 0.546875p! = 0.023071p

where u2 i1s teken to be equal to O.l. For pn = 0.3,

Wy = 0.032989p

For n =3 (fig. 7), the finlte-difference equations, after the
boundary conditlons are employed, become

\
20w, - 32wy + O, + bwy = p!
-8wo+23wl-16w2-8w3+6wh=p'
2w0-16w1+22w2+1+w3-16wh+2w5=p'
Vo = 8wy, + bw + 10w - 16wy, + 2wx = D! f (70)
0 1 2 3 i 5= P
3wl"8W2"8W'3+22W)+"8W5=p'
2 + 2wy = 16w, + 1845 = ! J
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The solutions of equation (70) are:

vy = 5.246672p' = 0.043722p
Wy = 4.597633p' = 0.03831hp
w, = 4.031250p" = 0.03359%p
Wy = 2.735207p" = 0.022793p

W), = 2.402367p" = 0.020020p
Wg = 1.439164p! = 0.011993p

1f p2 15 eassumed to be O.1. If p 1s assumed to be 0.3, the answer is

Timoshenko gives the exact valus of w, for a simply supported
square plate (reference 27) as: :

Therefore the solution by finite differences with n =3 1s in error
by 0.23 percent. This solutlon is seen to be sufficlently accurate for
engineering purposes. The agreement of the finite-difference approxi-
mation with the more exact results of Timoshenko is sufficlently close
to encourage application of the finite-difference approximetion to the
problems with large deflectlons.

The large-deflections problem, n = 2.~ After the boundary conditions
are inserted, the two sets of finite-difference equations are:

~
20F0‘32Fl+8F2+LLF3=K0 :
-8, + 24Fy - 16F, - 6.632#56F3 + 6.632456F) = K,
eFy - 16F, + 20F, + ll-.6321l-55F3 - 13.261+9:|_2F1L =K, > (1)

~2Fy = 4Fy + UFy - 0.632456F; + 2.632456F, = 8,

Fo --6Fp + 2.316228F3 + 1.3675M4F), = Sy

y
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\

and
o o : )

[20 + 2L.6(an' + Bo! + 70'):,w0 - [32 + 21.6{ag? + Bo' + 270'):]w1
+ (8 + 21.670')1{2 = P'

-(8 + 10.8B1 ")wp + [éu + 2L.6{ayt + P1* + 71'i]w1 (T72)
- I:i6 + 21.6(aq ' + 71')]w2 =p'

2wy - E.6 + 10.8(ay ' + Be'ﬂwl + [20 + 21.6(ant + By + 72')]w2 = p)'

It 1s to be noted that the terms of the left-hend side of equation (71
do not change if the assumed valuses of K and S are changed.
Equation (71) .cen be solved uniquely, therefore, in texrms of X's
and S's. The glven, suxiliery, and final matrices obtained by Crout's
method ere given in tebles 1, 2, and 3, respectively. More significant
figures than required are used to emsure good results.

The solutions of eguation (71) are as follows:

~
Fo = -0.04:8703K; - 0.265696K; = 0.225111K, - 0.30411LS; - 0.309525S,
F, = -0.111203K; - 0.307363K; - 0.235527K, - 0.262447S; - 0.2886925;
Fy = -0.103085K, - 0.311962K; - 0.221052K, - 0.1628808; '~ o.3176h232r(73)
F3 = -0.18993TKo - 0.506498K; - 0.316561K, - o.é5321+9sl - 0.12662ks,
F), = -0.094968Kq - 0.316561K) - 0.2690TTK, - 0.0633125; - 0.221593S,

<

For a numerical example of the computatlion, let
p = 100
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W W
From the cwrves for wg~ p, {%'v p, and 1-;§~ p (figs. 11 and 12),
it is estlmated that

W

<+ = 0.7535

L[¢]

W

-2 = 0.5775

¥o
The flrst trilel values are

W, = 0.655463

These values are written at the right-hend corners below the corre-
sponding net points. The finite-difference patterns are used as given

in figure L4, and @, B, 7, W, -W,, and then K end S are

found at the net points (fig. 13). As an example,
oy = By = =2(1.135000 - 0.855222) = —0.559556
7o = 1.135000 + 0.655463 - 2 X 0.855222 = 0.080019 S
Ky = (0.080019)2 - (-0.559556)2 = ~0.306700

Similarly, it is found that

K, = -0.189997
X, = 0.221966
2.368276
= 1.373368 ) -

0
]

o
}
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From equation (73) the values of F's eare obtained as follows:

Fo = ~1.129866
o= -0.977802
~0.780162

F3 = -0 .689klL

Fy = -0.42h723
These velues are substituted in any one of the expressions (equation (T1))
as a check and then are recorded at the net poilnts, as in flgure 13.
Similarly, the values of a', B', and 7' are recorded below the
corresponding velues of F.

Equation (T72) can now be written and the glven matrix is

Check

W,
colum

o W.

— ) ]
1 ¥a = P

34322771 -47.107213 8.9844k> 4,218750 0.218750
-12.26902% 36.930948 -20.392900 L.218750 8.48777h
2.000000 -19.408458 28.31345L 4.218750 15.123743

The check coluvrm can be obtelned by using the followlng relation:
Check column
L + p!
) 10.884' + p'

6 + 21.6(an’ + Bo') + p!

The sum of the elements in a row should be equal to the valwe of the
element of the same row in the check columm. This procedure provides a
check for the substitution made in the given matrix.
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The first spproximation gives, therefore

Wo = 1.117078

A computation similer to the ons outlined in the forsgoing numerical
example glves

K, = ~0.293781
2

S, = 2.299072
S, = 1.33997%

As & second trial, assume

, Ky = i(-o.3o67oo - 0,29378L) = -0.3002L41
K, = -2]=(—o.189997 - 0.184115) = -0.187056
K, = 25(0,221955 + 0.214841) = 0.21840k
Sy = %(2.368276 + 2.299072) = 2.333673
s, = %(1.373368 + 1.339974) = 1.3566T1

The results of the second, third, and fourth trlals are shown
in figure 13. The corresponding aessumed and ¢omputed values of the
fourth trial are

63
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Asgumed Computed
K, ~0.300L446 -0 +300006
K, -.187407 - 187k 72
K, 218738 218786
S1 24337941 2338531
84 1.360090 1.360631

The first three velues check with one another, and the results, correctet
to the third decimel place, are

wo = 101269
'H’l = 008502
W, = 0.6528

The large-deflectlons problem, n = 3.~ When n I1s teken to be
greater than 2, the same procedure of computation as that in the case
of n=2 1s stlll valid. As en example, the case of n =3 will be
considered, when the square plate 1s subJjected to & wniform pressure
of p = 100.

After using the boundary conditlons, the two sets of difference
equations (61) and (62) are obtained. Equation (61) can be solved in
terms of K's and S's, and the results are glven in teble k.

Wy W w W)
From the curves of Wy~ P, ia—vp, 1'-;(2).\. P, 1?3"'1” w_.o~ P,

W .
end ‘% ~ p (figs. 12 and 1k4), the following values are obtained by
extrapolation:

Wy = 1.1247

W

- = 0.8891

wo

W
‘;g = 0.7932

w
ﬁg = 0.5516
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Wl
o - 0.3037

2 . 0.3497

¥o

For & first triel, 1t is assumed that

Vo = 1.12k700
Wy = 0.99997L
Wy = 0.892112
w3 = 0.620385

W), = 0.566511

Vg = 0.393308
Agein these values are written at the right-hand corners below the
corresponding net points. With the computed veluss of «, B, 7,
OHyw, end Agw, the following values are obtained:

Ko = -0.061945

Ky = -0.052063

K, = -0.02286 -

K3 = =0.023043
Ky = 0.001252
0.106245
1.592696
1.262838
0.548700

4] '_‘m\fq
H " ]

n
]

By table % the values of F's are found to be

Foy = -1.095495

Fy = -1.028996
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.|
n

-0.950911
-0.868159

=
]

-0. 762520

Fy
Fy = -0.505761
F6 = ~0.675850
7= -0.546620
Fg = -0.239729

F

The values of F's are written at the left-hand cormers below the
corresponding met points, and the valuss of «', B', and 7' .are
computed.

When the velues of a', B', and 7' are substituted into
equation (62) and it is noted that p' = 0.00833333p = 0.833333, the
glven matrix of the equations is obtained as in table 5 and the suxiliary

matrix as in teable 6, end the solutions of equation (62) given by the
final matrix are '

wo = 1.123384
Wy = 0.998956
0.891465
0.620342

=
]

=
u

W, = 0.565591
W5 = 0390999

v

It might be pointed out here thet the check column of the glven metrix
mey be obtained by & dilrect substitution by using the following relstions:
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Chseck columm

p!
-1+ p
2 +p'!
2 X 10.88,' + p'
1 x 10.885" + p'
6 + 21.6(&6’ +7g') +p’
This procedure would provide a way of checking the substitution in the

given matrix, since the sum of the elements in any row should be equal
to the element of the same row in the check colwm.

The values of Ko, K, K, K3, Ky, K5, S;, S,, and Sz are
found from the ccamputed velues of w's. The mean valuwes of the K's
and S's first essumed and those computed axe used as the trial values
for the second cycle, and so one. At the end of the third trial, the
following essumed end computed values are obtained:

Aspgumed Computed

Ky -0.,061763 ~0 061695

K, -.051947 -.05189k
K, - 024660 -+024799
| K3 -+023377 -.0234TT
Ky, 001614 «001697
Ks <106177 210620k
S, 1.592106 1.592078
S, 1.281878 1.281§:.h

S5 546560 546173
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These values check wlth one another to the fourth dscimal plece. The
deflections at the varlous net points, accurabte to the fourth decimel
place, are
wo = l-lE’-I»O
0.9995
Wy = 0.8920
w3 = 0.6207
0.5660

5 = 0.3915

s
]

&
]

2
i

The resvlts of verious triels are shown In figure 15.

RELATATION METHOD

When a more accurate result is needed, the plate must be divided
Into a set of finer nots. The number of simulbtaneous equatlons
Increases as the number of nets 1s increased. In order to avolid the
solution of simultensous equations, Southwell's relaxatlon method
mey be used. The so-called relaxation method 1s essentlally a clever
schéms for guessing the solution of a system of difference squations.
A brief description of the method and a numerical exemple, the small-
deflection problem of & square plate, are glven in appendix A.

The solutlon of the general case of the large-deflection problems
of rectanguler plates by the relexation method has heen studled by Green
and Southwell and their method was outlined previously. Green and
Southwell worked with the three complicated equilibrium equations in
terms of the displacements u eand v and the deflection w. However,
1t is satlsfactory to use the two much simpler equations in terms of the
stress function ¥ and the deflection w.

The fundamental differential equations (1) and (2) can be rewritten
as follows: . _

P = k (74)

P = 10.8p + 10.8k! (73)
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where

k=<_a_2_1_2 3% %
ox Jy dx2 Jy2

k.=a_2_F8_%_w+§_2£8_2_w_2_§3F__§_2_w_
a2 32 xP2 ™R  x dy x dy

In applying the relaxation method, as usual, the domein of the problem
to be solved is first drawn, and the net points chosen. Since there
are two simulteneous equations to be solved, two sheets of paper may be
used, one for F and one for w. A set of solutions of F and w are
guessed and are recorded on the F- and w-plames, respectively.

By sterting from the assumed values of w, K can be computed
without difficulty. Equation (74) 1s then & linear differential equation
for F, . and the blharmonic relaxation pattern may be used. After the
resldues at each point have been reduced to the dsaslred extent, the
new values of F may be substituted into equation (75) and it may be
solved by the relaxation method. Egquation (75) leads to a rather
complicated relaxation pettern for w. In acstual computatlons the
biharmonic pattern mey be used, the assumed values of w being used for
the computation of k'. By means of the relaxation process, the residues
at all points ere reduced somewhat. New values of k' are computed
end the resldues are then corrected. The relexatlon operation is applied
agein untll the values of w are determined to the desired accuracy.

The averege values of the new K's and S's and the originally essumed
ones are now ised in the second cycle. The cycles are now repeated unmtil
the final results have the desired accuracy. '

In general, the boundery conditions for F are usually difficult
to handle. It is possible, however, to solve the boundery velues of F
in terms of its values for interior points. The boundary vaelues of F
vary from time to time as the interior values changs. Ths operation
is rather complicated, but it can be handled.

In the case of a square plate with glven edge displacemsnts, the
boundary conditions as given by equation (49) mey be used to some
advantage. Equation (74) can be written as

VeT = k

(76)
VeF = T
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and the boundery condltions are given by

-
Tog + 2T 4 Feee v 2L g Ty =8y
o m
T (1 - w2 ; 6“’1 ) wn'l’Dz
7 (77)
<Ax2F ) I"A-V’ZE)m,:l. =0 ) -
e

In using this form, not only are the boundery condltlions much easler to
handle, but also the relaxation pattern 1s simplified from the biharmonic
type to the harmonic type. The simplification ls obtalned at the _
expense of Introducing ons more equation into the system and therefore
coneldering one more plane. The resulits obtained are given in figure 16.

DISCUSSION OF RESULTS

The bending problem of a square plate under wmiform normal pressure,
with the edges prevented from dlsplacements along the supports but free
to rotate about them, is studled by the finlie-difference approximations.
The difference equations are solved by the method of successive approxi-
mation and by the relaxation method. The compubation starts with n =1
to n = 3, In whlch case the plate is divlided into 36 square nﬁ‘bs with

25 inner points. The maximum normsl) pressure calculated 1s _'_p_a_.z = 250,
Eh

After the velues of w and F have been determlned, the stresses
can be found by the following relations:

'=afE=Ay2F _ Bt

g -
¥° (a)®  (m)?

p o

ot o a—ﬁ, =Ax2F _ !
T a2 (a1)2  (a1)?
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x = 2(1 - ua)@xgw ¥ "AY%D (a1)2

_ 1
2(1 - pR)(ar)2

(o + pB)

" 1
O'y = - 5
o(1 - u2)(A1)

(B + pa)

where o' and o" are the membrane stress and the extrems-fiber
bending stress, respectively. The total stresses o are the sum of
the membrane and bending stresses at the sectlon and are maximm at
the extreme flber of the plate. They eare

- t 1]
Oy = 0" + Ox

4 ”n
Uy=0y +0'y-

At the center of the square plate, «' =p' and o =B, and therefore
the stresses are

Op'! = g, = @ = B'
S P R O
O o = < = B
. T T a0 - p(an)2 21 - p)(an)2

The deflections at verious points determined in the ceses n =1,
n=2, and n=3 are tabulated in tables 7 to 9. The center deflectlms
are plotted against the normal pressure ratio in flgure 12. The mombrane
stresses in the center of the plats and at the centers of the edges are
tebulated In teble 10 end are plotted in figwre 17. Ths bending and
total stresses are tabulated in table 11 and are plotted in Figure 18.
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A study of the resulis shows that the maximum error in center
deflections is O.47 percent for n = 2 in comparison with n = 3
and the maximumm error in the center membrens stresses is O.kh perceﬁt,

both values being conservative. Both maximm errors occurred at P—a—'l-; = 250,
4 Eh

The error in the center bending stresses 1s 2 percent at 72 . 12.5

en

N
end 1s 0.83 percent at EI: = 250, both valuss being unsafe. The error

Eh b
in the center extreme-fiber stresses is 1.6 percent at Ea—‘l; = 12.5
4 Eh
and 0.l7 percent at p_a.: = 250, both values beling safe. The error in
Eh .
the menbrane, stresses at the center of the sldes ls 12 percent for both

i
oy 'e2/mn® and o 'e?/En® at EZ- = 12.5 and 8.9 percent for both

Ehhh
Gx'ae/EhQ and. 9y '22/En2  at Eﬁ = 250, these values being unsafe.
Eh
One case of n = 4 has been solved by the relaxation method.
b , Oxy e oy, 'a®
At B2 2100, it 1s found that = = 1.1250, = = 4786,
Eh h Eh2 Eh®
— = 11.39k, = 9.688, and = 3.064. When the resulis
2 2 2
Eh Eh Eh L
for n = 3 are compared with those for n =k at EEK=100, the

Eh
center deflaction has an error of 0.09 percent, the center membrane gtress
has an error of 0.02 percent, the cemter total stress has an error of
0.5 porcent, and the membrane stresses ox'a2/Eh2 and c:y'a.e/}i{l‘l2 have
the errors of .2 percent and L.l percent, respectively, all values
being wnsafe. Since in the present case only the center deflectlons and
stresses are to be inveastigated and the errors are sufficlently small
for engineering purposes, the case n = 3 1s considered to be satisfactory
for the final results.

The center deflections obtained by Way (reference 15), Levy
(references 17 and 19), and Head and Sechler (reference 235 are plotted
in figure 19 for comparison with the present results. The center
membrens, bending, and total stresses are plotted in figure 20 to
compare wlth the results by Levy (references 17 and 19). It is seen
from thess results that the center deflections are in good agreement with
tegt results from the Californie Institute of Technology up to

L
BEI; = 120. The theoretical resulis seem to be too low at hlgher pressures.
Eh
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It is inberesting to note that the test results ere really for
clemped-edge plates. The clamping effect seems to be only local, and
at the center of the plate the plate behaves Jjust as though 1t were
simply supported; that is, the plate 1s free to rotate about 1is edges.

From the point of view of the engineer designing the plate, the
totel stresses at the center of the edges ere stlll mmch larger in the
case of clemped edges then in all the other cases; hence, a design based
on those stresses would glve & conservatlve structure. The center
deflections, however, would give an idea of the magnitude of the
waghboarding of a boat bottom while a seaplame ls taxying or landing.

CONCLUSIONS

The following conclusions mey be drawn from e theoreticel analysis
of an initially flat, rectangular plate with large deflectlons under
either normal pressure or combinsed normal pressure and side thrust:

1. The large-deflection problems of rectengular plates can be
solved epproximately by the present method with any boundery conditions
and to any degree of accuracy required. Although it is still difficult,
the present method 1s, nevertheless, simpler then the previously used
motheods for glving the seme degree of accuracy.

2. For the square plate considered, case n = 3 glves results of
good eaccuracy, and the results are consgistent with the existing theories.

3. The clamping effect of a clamped thin plate seems to be only
local. At the center, the plate behaves more likes a plate with simply
supported edges; that is, the thin plate is approximately free to rotate
about its edges. —_—

3 by
, The test results show that, at B- 5 175 (where B s
' mn’* En*
nondimensional form for normal pressure), all the exlsting solutions of
the differential equations give unsefe results for center deflection
for a square plate. This conclusion perhaps suggests the range in
which the differential equations may be applied.

5. The present results' of the center deflections and menbrans
L e
e
etresses give good agreement with the test resulis when P—[,-_ < 120.
Eh

Massachusetts Institute of Technology
Cambridge, Mass., March 4, 1946
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APPENDIX A
BRIEF DESCRIPTION OF RELAXATION METHOD

The idsa behind the treatment by the relaxation method is
essentially Just the sams as that by Cross' method of moment distributlon
in the case of bending of continuous beams. It seems, therefors,
easlest to explain the relaxation method by a comparison wlth the
moment-distribution method, since the latter 1s well accepted and is
familiar to most structural engineers.

The redundant beem &s shown in figure 21i(a) is now examined. The
procedure for obtaining the redundant support moments by the moment-
distribution method is well known. The first stsp In the moment-
dlsgtribution analysis 1s to assume that the slope at each of the four
supports 1s zero. By this assumption, the end moments at A, B,

C, and D can be found without difficulity. The result is shown

in figure 21(b). Here the boundary conditlions at A and B are
satlisfied, and the principle of continulty is also satisfied. The
condition of equilibrium, however, is not satisfled, since there are
unbalanced moments at B and C. The moment-dlstribution method now
offers a procedure to balance these unbalanced moments by & relaxation
based on consistent deformations. The analysis by the relaxation
mothod, in this case, would be essentially the same. The moments at A,
B, C, and D are assumed to satlsfy the boundary conditlons and the *
condition of continuity. The unbalanced moments at B and C are

then distributed by the relaxation based on conslgtent deformations.

The difference lies in that the relaxation method offers more fresdom

in essuming ‘the end moments and therefore could make the convergence of

the operations more rapid. On the other hand, however, it becomes

difficult to assume these values.

The method of moment distributlions appllies only to redundant
structures, but the applicatlion of the relaxation method extends much
further, and its application to the partial differential eguations
has brought the study of engineering sciences Into a new era because
the boundary conditions are now no longer difficult to be described and
to be satisfied. :

The procedure can be illustrated by a study of the small-deflection
1

theory of thin plates. ILetting w=%—, where w'! and p are the

nondimensional deflection and pressure, respectively, gives the
following equilibrium equation in terms of the finite dlfference

Axh'w + 2A1;Y2w + Ath = 12(1 - p2)(a)" (a1)
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In order to solve the problem, the domain to be investigated 1s drawn
and the net points chosen. Velues of w eare assumed to satisfy the
boundary condltions and are then writien adjacent o each point of the
net. From these velues of w, the residuals Q &t pointe (m,n)

are computed and recorded as follows:

S n = 20wy n - 861:1+l_,n * Wpei,n * Vmoned t 1'rm',n-il.>
+ 2@1+1,n+:|._ * Vel ,n-1 Y ¥pepnda t wm-l,n-l)

+* (Vmion ¥ Ypeon T Yoot T ¥in,n-p
. > 3 2 ]

- 1201 - u2)(a1)* , T (a2)

The residuals @ thus computed can be thought of as an wmbalanced
force which must be removed from the system. Now, instead of setting
up a specific iteration process, it is merely observed that if the
deflection at one point (m,n) is altered, all others remaining fixed,
the residuals will change according to the patitern of figure L, the
relexation pattern. Each change of w at any point effects & redistri-
bution of the residusls @ emong the net points, and such changes of w
are desired as will move &1l the umbalanced forces to the boundary.

For & simply supported plate, the defleciion and bending moments
are zero along the edges. Equation (Al) cen be written as

2% = »

Ietting Vow =M mekes possible the formmlation of the boundary-value
problem as follows:

VM =1
(A3)
M = 0 ealong the four edges
and
B = M
(Ak)
w = 0 along the four edges



76 NACA TN No. 1425

The problems can now be solved In two steps, that is, first, by
use of equation (A3) and then by use of equation (Al). This transformatio:
greatly reduces the labor required in applying the relaxation msthod
because the relaxation patisrn of the harmonic or Laplaclan type is
much simpler than that of the blharmonic type.

Ag an example, the boundary-valus problem is solved when the plate
is a square one. The process is considered with n = 4. From the
previous results as found from the calculations with n = 3, +the values
of w at all the nst points cen be assumed. By equation (Ak)

" Mpn = Vmian *Vpan *Vpops fVmne1l " ll""m‘,n (45)

The values of Mm,n are then recorded at the right of the corresponding
net point, and the residuvals

b .
w,n = Mnsi,n tMpey p t My opey tMpone1 ” My n - 1201 - u2)(ar) (46)

are computed end are recorded at the left of those nst polnts. The
results are shown in figures 22(a) and 22(b). For example,

Mg = bwy = by = 4(0.0406) - 4(0.0437)

M1+=W

2+1,r3+w5+sfar7-lnqL

0+0377 + 0.0316 + 0.0231 + 0.0163 - 4(0.0295)

-0 00093
Qo = ¥y - UMy - 0.002637
= 4(-0.0117) - 4(-0.0124) - 0.002637

= 0.000163
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U

Mp + Mg + Mg + My - Iy - 0.002637

-0.0106 - 0.0093 - 0.0078 - 0.0064 - 4{-0.0093) - 0.002637

0.001463

where 0.002637 = 12(1 - p2)(A1)¥, since 42 = 0.1 and A1 = 3.

The largest counterbalenced M occurs in the vicinity of the
greatest deviation of the assumed values from the correct solutlon;
gso changss are first made at this point. An examination of figure 22(b)
showe that the greatest residual occurs at point 2. Since )

Q, = 2M; + 24y - WM, - 0.002637

& change of M, would change Q,e by an amount equal to four times
(-&45). Mathemstically,

60, = -ty

vhere A denotes the amount of chenge. Adding -0.000k to M, while
essuming all the other values of M to remain unchanged gives
= 0.0016, and Qy is now equal to -0.000637. If a nomenclature

similar to that in the method of moment dlstribution is used, this
process can be called balancing the unbalanced Q. A symbol (1) is put
at the side of the valus to indicate the filrst balancing. Now 1t 1s
observed that

Q1=M6+2M2 + M3 - My - 0.002637

A chengs of M, with all ths other M's fixed would change Q; and Q)
by the relaticns as follows: |
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MRy = 20y

Now, by relaxing the nets,
&Qy = 2(~-0.000k) = -0.0008
AQ)_{_ = -0-00011-

and

Q; = 0.001263 - 0.0008 = 0.000463

Q, = 0.001463 - 0.000%k = 0.001063

NACA TN No. 1425

These operations may be called carrying-over and be denoted by (cl).

The wholes process consists of 20 balencing and carrying-over
operations by simllar calculations. The detalled operations of +the
computations are shown in figure 22(b). After the valuss of M's are

computed, the reslduals are computed as follows:

' _
Q'm,n - Wrm.-l-l‘,n + wm--l‘,n + W

m,n+l T m,n-1 " l"Wm.,

n"Mm,n

The values of w mey be determined by a simllar series of calculations
The detalled operations and computations are shown in flgure 22(2).

The whéle process conslsts of 11 balancing end

ing-over operetions

The center deflectlion ratioc thus obtalned is, for p = 0.316228,

Wo = 0.043790p

For u = 0.3,

Wy = 0.043790 X %ﬁ2¥p

which checks exactly with the exact analytlcal solutlon.
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For thin plates with clamped edges, the boundary condltions are

=0, along X =

o'

ow
ox
%g: =0, along y-=

ro'iE

The relaxation patitern of the biharmonle type must be used in this case.
Although the pattern 1s more complicated, the process ls essentially the
seme .

After the essential 1dea of the relaxation method is grasped, other
problems mey be solved by rather obvious steps. It may be noted that
no gusstion of convergence can ocowr in the generel relexation process
since no specific instructions are given. If, after soms steps, the
reslduals get worse, the intelligent computer makess cheanges in the
opposite direction. These remarks, however, oversimplify the problem
somewhat beceuse of two facts: filrst, the camputer may become confused
as to whether the reslduals are really better, and, secondly, there 1s
always & guestlon of whether & solutlon with zero residuals exists.
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PABLE 1.- SOLUTIONS OF EQUATTION (71); GIVER MATRIX

Fo ¥y Fp Fy . B K
20,00000000 | -32.00000000 | 8.00000000 | 4.00000000 Os Ky
-8.00000000 | 24.00000000 | -16.00000000 | -6.63245600 6.630456000 K
£2.00000000 | =16.00000000 | 20.00000000 | 14.632456000 | -13.26491200 | K,
~2.00000000 | -%.00000000 { 1.00000000 | -.632456000 } 2.63245600 | 8¢
1.00000000| © -6.00000000 | 2.31622800 1.3675400 | 8,
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TABLE 2.~ SOLUTIONS OF EQUATION (71); AUXILIARY MATRIX

20.,00000000 | -1.600000000| 0.400000000 | 0.200000000| ©
-8.00000000 | 11.20000000 | =L.1428571h | -.hh93p6h3 59218357
2.00000000 | -12.80000000 | L.571h2861 ~.33226425 | -1.24358549
~2,00000000 | =7.200000000| -3.428571k1 | -k.60679800 -.57140858
1.00000000 1.600000000 | ~4.57140858 | 1.31622800 | -k.51278167
ILast column
Ko Ky KQ Sl 82

0.05000000

+035TL429 | 0.0892857L

07812501 24999999 | 0.21875000

-.13566908 | -.32560575 -.16280288 | -0.21707051

-.09496836 | ~.31656115 - +26907699 -.06331223 | -0.22159282
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TABLE 3.- SOLUTIONS OF EQUATION (71); FINAL MATRIX

7\

5 5 % 5, 5,
-0.04870p54 | -0.26569616 | -0.22511074 | -0.304113%92 | -0.30952531
- 11120254 | -.30736283 | ~-.235527h1 | -.262h4725 | -.28869198
-.10308545 | ~.31196199 | -.2210%220 | -.1628797h | -.3176U4240
-1893672 | -.50649784 | -.31656116 | ~-.25304893 | ~-.12662W47
-.00496836 | -.31656115 | -.26907699 | -.06331223 | -.22159202
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% 5 2 I K, &
¥y = -0.118035 | -0.622023 | -0.632001 | -0.4963k5 | -0.904377 | -0.288561
Fi= =-.199285 | -.TAhBB0 | ~-.673668| ~-.514h02 | -.923h0hk | -~.2000k
Fp = -.22h028 | -.787231 | -.673033 | -.525863 | -.o16uMk | -.288867
r:,, = =.306047 | -1.03446h | -.88327L| =-.58076h | -1.032622 | ~.306995
T, = -.261272 | -.927438 | -.00823L| -.5551B2 | -.9618%5 | -.293340
By = ~-.186116 | -.680939 | -.620292 | -.h6pBBY | -.83052h | -.25k089
¥ = -.427358 | -1.410958 | -1.139620 | -.841148 | -1.302k23 | -.352THO
¥g = -.303899 | -1.107060 | -1.012996 | -.651212 | -1.20L32k { -.3400T7
Fg = -~ 023459 | ~.u66702 | -.4h3186( -~.3527HO | -.66015% | -.27h956
- 8, ) Sy '
<0.292423 | -0.439791 | ~0.182625
~.27h566 | -.h20Th3 | -.L77863
-.233883 | -.413113 | -.18012
~266686 | -.3h0766 | -.h5TS6
- 17534k | -.35310L | -.173066
-.092310 | -.206823 | -.251569
«2984T2 | =.2170TL | ~-.054268
-.108535 | -.318370 | -.079593
~«027A3% | -.079593 | -.209835 NATTOMAT, ADVISORY
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TABLE 5.- SOLUTIORS OF EQUATION (62); GIVEN MATRIX

R

¥o ¥ Yo ¥3 v 5
25.99577L | -38.2u6029 8.250258 4.,000000 ¢ 0
-9.686636 | 31.006139 | -18.632867 | -10.281802 | 6.595166 | ©
2.000000 | -18.382610 | 28.241968 %.000000 | -21.336107 | 3.476749
1.000000 | -10.281802 4,000000 | 2k.752966 | -17.189361 | 2.000000
0 3.000000 | -9.632096 | -B8.297097 | 26.941238 | -9.379948
0 0 2..000000 2000000 -16;2’0@25? 17.832k49
0.833333 0.833333

-833333 - 166667

+833333 | -1.166667

833333 3:215135

.833333 3.465429

833333 6.1465485
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TABLE 6.~ SOLUPIONS OF EQUATION (62); AUXILIARY MATRIX

25,995T71 | -Ll.k7l2hod | 0.3173692 | 0.153871L2 0 0
-0.686636 .| 16.7547688 | -.9286080 | -.52k704B .3936292 | ©
2,000000 | -15.4401292 | 13.2693882 | -.3322875 | -1.149806k4 | .2620128
1.000000 | -8.8105616 | -4.:989351 | 18.4812109 | -1.0223668 | 1720006
0 3.000000 | -6.8462693 | -8.9979123 8.6886832 | -.69%9835
0 0 2.000000 2.6645750 | -11.1763312 | 9.0827491
0.0320565 | 0.0320565

0682703 .0085858

.137h082 -.0827630

-1093525 -2589862

2938535 -5988697

«3909987 | 1.3909983
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pa.h wo/h

E-;E n=1 |pn=2 |n=3 |n==h
o ¢ 0 I
2.5 .3888 -h4062 4055 | wmm---
25 58 | 6092 | 6083 | w-----
50 818k LBuTh BUE0 | ~mme--
75 9757 | 1.0052 | 1.0031L | =~=n--

100 1.0980 l.‘l269 1.12%0 | 1.1250

150 1.2888 | 1.3145 | 1.3104 | ==ee=-

200 1.4376 | 1.4616 | L4557 | ~-=c--

250 1.5623 | 1.584% | L.5770 | ===-==
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TABLE 8.- DEFLECTIONS AT VARIOUS POINTS

o -]

ptmt | wm | wh | wpm
0 o] 0 0
12.5 Lo62 .2980 »2198
25 6092 4508 +3363
50 847l 6332 4791
5 1.0052 7555 5766
100 1.1269 .8502 .6528
150 1.3145 .9966 « 7713
200 1.4616 1.1116 .8648
250 1.584k 1.2076 29431
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TABLE 9.~ DEFLECTIONS AT VARIOUS POINTS

pltfert | wofn | wi/n | woh | wa/n | w/m | ws/m
0 ) o 0 o 0 0
12.5 4055 | W3564 | 03136 | .2139 1890 1159
25 6083 +5365 4738 +3249 2892 <1822
50 .8460 o ThoL .6650 JA1592 4131 2711
5 1.0031 .8905 +7930 «5500 4986 «3370
100 1.1240 «9995 8920 6207 | 5660 .3915
150 1.310% | 1L.1677 | 1.0450 « 7305 6717 4804
200 1.4557 | 1.2988 | 1.1641 +8164 «T551 5531
250 1.5770 | 1.4081L | 1.263k .8880 8249 6149
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TABLE 10.- MEMBRANE STRESSES

[Su'bscript 0 denotes center of plate;
subsceript 1 denotes center of sides

G-

e N Nl %y "% Iy '®
ggf mn2  E2 Eh? ER®
Eh*
n=2 n=3 n=2 n=3 n=2 n=3
-o ) ) 0 0 0 )
12.5] .6103 .6089 03338 | 3795 | 1.055 | 1.200
25 [ 1.38: | 1.377 .T612 | 857k | 2.b07 | 2.711
50 2.695 2.683 1.k8h 1.661- k.693 5.254
> 3.806 | 3.792 | 2.096 | 2.341 6.628 | T.hO1
100 L.802 L.785 2.643 2.943 8.357 | 9.305
150 6.566 6.542 3.613 k.001 11.43 12.65
200 8.136 8.103 h.h73 k.929 1k.15 15.59
250 9575 9.533 5.26k 5.778 16.64 18.27

NATTONAL ADVISORY
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TABLE 11.- EXTREME-FIBER BENDING AND

TOTAL STRESSES AT CENTER OF PLATE

Bending stresses, Totel stresses,
c"a2 o'al . o"a?
k4 2 2 2
pa ' Eh Eh' Eh
b
B n=2 n=3 n=2 n=3
0 o] 0 0 o]
12.5 2.530 2.582 3,140 | 3.191
25 3.708 3.78% 5.092 | 5.158
50 5,010 5.087 7705 | T.T70
o) 5.845 5.928 9.651 | 9.720
100 6.475 6.554 1L.277 |11.339
150 T.439 T.513 14.005 {1k.055
200 8.191 8.261 16.327 |16.36k
250 8.817 8.801 18.392 |18.42kL
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Yy
e A X >ie 4 X +
1 Am,nﬂ
Ay
Y
» Am-l,n Am,n Amsrn
a4y NATIONAL ADVISORY
1 vy COMMITTEE FOR AERONAUTICS
X
Figure 3.- Finite-difference notation.
[ 1]
-1 1
=2 1] -2/ m,n *
m,n ) | 1=1]
2 m,n
A 2
X A
y Axy

Figure 4.- Relaxation pattern.
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Figure 12.- Center deflections for a square plate under normal pressure p.
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100

ojo )
P=[00, n=2
3.= 2.368 278 1 FIRST APPROXIMATION * SECOND APPROXIMATION
8= 1373388 ' $,=2.345 881
1- ASSUMED SF L. 363002
+2- COMPUTED N
$=2.209072 | ,
S,= 1.339 974
780162 |.655 463 424723]0 , , =7700i8|.853,907 ~-.419418
o=ff= 187799 | X ==-455704 o'z 158934| or=p=~456 219
Th 089284 | Y= .635463 1 T'= 0688185 T = 653907
K 214 841 K= - 219459
848112
x=p=- 452999
T= .848112 2
KE 214 84l
(Aw)2=.273 833
(Aw), =,279778 .277146
-1.129 886 1.135000 -.977802 835222 -689444 Q =1 114,469 1128741 ~964684 851535 - 880153 0
ez 204128 or =R2-,550.558 X n- 5875 444 o p: 299570 ox=P=-554 292 O o= 574 449
T'= 045576 Y= 080019 P =-399518 | Ts 044881 Tu 079458 B=-.395376
Kq==.308 700 T .A90759 Kgi2 =300 926 Ta ,|97688
&kt 136294 K=~ 189997 b 34744 K=-.188043
f'= 39s280 p'= 389232
Y= 067081 T'= 088071
LT, 078 843228
X =QBu-, 547706 ™=~ 569372 NATIONAL ADVISORY
T= .078 740 2 B=-.390228 ) COMMITTEE FOR AERONAUTICS
Ks==.2937681 Y= 19513
K=-.184118
olo oo .
THIRD APPROXIMATION FOURTH APPROXIMATION
S8,= 2,336108 S5 233853
8,2 1.359343 S,= 1.36063!
~772 256 | 652 552 ~420674|0 ~ 771743 | 852 848 =420 405]0
x'=p 158423 | X=f=~ 455280 xEp= 156342 | X=B=z- 4855439
T'= 069092 | Y= 632 552 T® 069067 | T= .652 843
K7 218 844 Ky .218788
.276552 .276 720
-1117582 LI26376 ~967415 849 824 -.6820688 O =LI6797 LI26 977 966739 .850257 ~.881558 O
ok p= 300334 Xu=fiz- 533 104 oa-.573 272 b plx 300116 Xmpn- 553440 =~ 873 537
T'=s 044992 Y= .079280 B=-.394544 T'= 044938 T= 0793l fA=-394 8!8
K== 299 639 T= .197272 Ke@=. 300008 ~ Y= 197 409
o= .3sis0  Ki=-.187268 : o'z jagiay K187 472
B'= .3g03I8 B'= .ase992
T'= 0868235 T'= 086157

Pigure 13.- Method of tabulationof « , B, 7 , (Wpe1
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- Wwp), K,S,and F. n
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Figure 14.- Curves of Wy ~ D, W1/W0 ~ D, w2/w0 ~ P, wﬁ/w0 ~ P, w4/w0 ~ p, and

w#w0 ~pP. n=3,
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S,=/282 838

S, =t592 696 )
/
Sy=.598 700

!/ ASSUr7EpL

Sg=/280 080

: ' S COMPUTED
S/=2 590 165 2
Syx 595095 }

(aAw), =.333 308
~50576/ 393 308 -239 729 (o
=ML .009273|x28x-.220 105
Y*-.026343|7s .393308
Ke= JOG 295

330 999
wefn-.2/6 FO7
Y= .390999
HAgm ./0G 098

CAw), = . /07 859 (aw) s.325 60/ (aw), = 56650

-850 S//| .89& /e -762 520 .566 5//

<8 SO B06lnSs-2rT7I2 o« '=.037 SO

 «=-.290 9/0
Y's .0683¢8r= ./52 398 Al 151120, px-. 119 32

K= ~.02¢ 786 ¥'s 050/32 Y= ./73 203
Ke= .00l 852

5% 620 |O

(aw)s =.r07 437/ (AW e = . 325 a7 (A W)y =./790 592
.89/ 265 565 55/
WA x~.2/8 383 wLa- 2838 7/7
Y= ./5 282 Au-.119 84/
Kp=.024 805 Y= /79 522
Koz .00 75%
@W),=.124 729 (aw) = 379 5886 AW, - .620 385
~1.0985495 1124700 -.028 996 .995 57/

-.868/59 .620385 -G75850 O
a3 M3 I8 K1 @1~ ETS M58 L'x 099338 «2-.259857 «'s .O3/472 Am-.240 799
Y's -0l 58G Y= .0/6 870 s .U56/70 pc~.2/57/8 p'r .8//278 Bx—-.07 798
Hx 06/ 642 Ya .02755¢ Y= 033985 Y. .02359 Vs 053879

K »=.082 063 Ky==~, 023093
(B yrig=.r2q 428 (Aw)s =.378 Grq (A W)z =.620 3v&
L/23 384 . 9598 556 G20 372
*18a 298 856G Le-.259 18G w24/ 728
Y= .0/6 937 Bs-.2/9 982 B=—, 109502
Kom-.06 o492 Y= 082 740 Y= .08 75/
/== 08] 86 Hy=—~.023 472

(a) First approximation.

‘Figure 15.- Results of various approximations. p = 100; n = 3,
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-.0Z7733 . 999 77/

WLefSa /32 86T & 28 -~ 2I9042 &'z 01202 %»-. 254383 «'=

Y's

Or1 59/

Y= .016 967 B /156016 B=-.a/5 /08 A=
K=-06!I 739 Y5 .0275M r=

x-081 93/

-.867069 .620 867

.03/365 Wz~.29/3963
2/7/99 B=-./0999¢

.052 807 Y= 02557 r= .O5979¢7

H=-023996

(b) Second approximation.

Figure 15.-

Continued.
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S2=r282 296
S3 = . 596 229
-.50989¢| .39/ 765 =239 205 ©
-('c": 009 /13 |8z 82—, 26 8O
Y:-.026958| v: -39/ 965
/= .. j06 208
S/O7 5594 326 997
~.9997/0|. 892 217 -76/472|.566G /20 -.Ss95872| O
LAy /10 28/5 |Xefa-.8/8 595 'z .027362| & u=-.290 O23
Y 068390\ r= /87943 P 12098 |8=-1/9 508
Ke=-029 826 Y= 05009/ Y= ./74GSS5
= .00/ 739
129 52/ 378 d0<
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Y'n 0/ GO8 Yyas .0/ 37/
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K=z=-,06/ €95 y= .027606

Y= .0S28/1¢ Y's .OZ3578

A=, O57 8957

(c) Third approximation.

Figure 15.-

Concluded.

rz OS¢ 700
Ha~OZ3 477
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NATIONAL ADVISORY -
S;= 1.592 078 COMMITTEE FOR AERONAUTICS
S =28 817
Sy = .596 173
~5049 9/7 | .39/ 496 -.239/69\0 B
2pe 009053 (K epn-2/c 996
Y=-.026585|r= 33/ 196
A= .J0G 207
SO, Sl .325 997
~.979 937 |.892 033 -764Gl7|. 866 096 -.saa'srqo
W Bs /0 268 |0rBa-210 176 «:. O87 3/9| %, n ~. 890 O59 -
. s 068380 r= /51937 B= 57039 | B=-.//9 850
Ma=O024 799 )= 050 /14| Yz 179 550
K= 001697
/29 482 .378 798
~1.0272%92 .93 S5v9 ~SET8 - 620 196 -e158/7 O
Wnds /32 906 %rgu-.298 961 &'z 099260 X3-.2593/6 W'z .O3/397 A=y.29/ 978
B’ 196 110 Mx-.2/5022 A= 2ID22 Pr-./09 900
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(a) Domaln of problem, w-plane.

Figure 18.- Relaxafion method. p=100; n=4,

(b) Domain of problem, T-plane.

Figure 16:- Continued,
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Concluded.
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Figure 21.- Moment-distribution method.
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Figure 22.-

Concluded.

2y A 3)% = 0.002637; @ = v2M - 0.002637.



